Duke Mathematical Journal

Faber–Krahn inequalities in sharp quantitative form

Lorenzo Brasco, Guido De Philippis, and Bozhidar Velichkov

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The classical Faber–Krahn inequality asserts that balls (uniquely) minimize the first eigenvalue of the Dirichlet Laplacian among sets with given volume. In this article we prove a sharp quantitative enhancement of this result, thus confirming a conjecture by Nadirashvili and by Bhattacharya and Weitsman. More generally, the result applies to every optimal Poincaré–Sobolev constant for the embeddings W 0 1 , 2 ( Ω ) L q ( Ω ) .

Article information

Duke Math. J., Volume 164, Number 9 (2015), 1777-1831.

Received: 14 June 2013
Revised: 21 September 2014
First available in Project Euclid: 15 June 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 47A75: Eigenvalue problems [See also 47J10, 49R05]
Secondary: 49Q20: Variational problems in a geometric measure-theoretic setting 49R05: Variational methods for eigenvalues of operators [See also 47A75] (should also be assigned at least one other classification number in Section 49)

Stability for eigenvalues regularity for free boundaries torsional rigidity


Brasco, Lorenzo; De Philippis, Guido; Velichkov, Bozhidar. Faber–Krahn inequalities in sharp quantitative form. Duke Math. J. 164 (2015), no. 9, 1777--1831. doi:10.1215/00127094-3120167. https://projecteuclid.org/euclid.dmj/1434377461

Export citation


  • [1] E. Acerbi, N. Fusco, and M. Morini, Minimality via second variation for a nonlocal isoperimetric problem, Comm. Math. Phys. 322 (2014), 515–557.
  • [2] N. Aguilera, H. W. Alt, and L. A. Caffarelli, An optimization problem with volume constraint, SIAM J. Control Optim. 24 (1986), 191–198.
  • [3] F. Almgren, J. E. Taylor, and L. Wang, Curvature-driven flows: A variational approach, SIAM J. Control Optim. 31 (1993), 387–438.
  • [4] H. W. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981), 105–144.
  • [5] M. Barchiesi, G. M. Capriani, N. Fusco, and G. Pisante, Stability of Pólya-Szegő inequality for log-concave functions, J. Funct. Anal. 267 (2014), 2264–2297.
  • [6] T. Bhattacharya, Some observations on the first eigenvalue of the $p$-Laplacian and its connections with asymmetry, Electron. J. Differential Equations 2001, no. 35.
  • [7] T. Bhattacharya and A. Weitsman, “Estimates for Green’s function in terms of asymmetry” in Applied Analysis (Baton Rouge, 1996), Contemp. Math. 221, Amer. Math. Soc., Providence, 1999, 31–58.
  • [8] V. Bögelein, F. Duzaar, and N. Fusco, A sharp quantitative isoperimetric inequality in higher codimension, preprint, http://cvgmt.sns.it/paper/1865/. (accessed 8 April 2015).
  • [9] L. Brasco, On torsional rigidity and principal frequencies: An invitation to the Kohler-Jobin rearrangement technique, ESAIM Control Optim. Calc. Var. 20 (2014), 315–338.
  • [10] L. Brasco, G. De Philippis, and B. Ruffini, Spectral optimization for the Stekloff-Laplacian: The stability issue, J. Funct. Anal. 262 (2012), 4675–4710.
  • [11] L. Brasco and A. Pratelli, Sharp stability of some spectral inequalities, Geom. Funct. Anal. 22 (2012), 107–135.
  • [12] T. Briançon, Regularity of optimal shapes for the Dirichlet’s energy with volume constraint, ESAIM Control Optim. Calc. Var. 10 (2004), 99–122.
  • [13] T. Briançon and J. Lamboley, Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 1149–1163.
  • [14] D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems, Progr. Nonlinear Differential Equations Appl. 65, Birkhäuser, Boston, 2005.
  • [15] M. Cicalese and G. P. Leonardi, A selection principle for the sharp quantitative isoperimetric inequality, Arch. Ration. Mech. Anal. 206 (2012), 617–643.
  • [16] M. Dambrine, On variations of the shape Hessian and sufficient conditions for the stability of critical shapes, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 96 (2002), 95–121.
  • [17] G. De Philippis and F. Maggi, Sharp stability inequalities for the Plateau problem, J. Differential Geom. 96 (2014), 399–456.
  • [18] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, Fla., 1992.
  • [19] A. Figalli, F. Maggi, and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math. 182 (2010), 167–211.
  • [20] N. Fusco, F. Maggi, and A. Pratelli, The sharp quantitative isoperimetric inequality, Ann. of Math. (2) 168 (2008), 941–980.
  • [21] N. Fusco, F. Maggi, and A. Pratelli, Stability estimates for certain Faber–Krahn, isocapacitary and Cheeger inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8 (2009), 51–71.
  • [22] B. Gustafsson and H. Shahgholian, Existence and geometric properties of solutions of a free boundary problem in potential theory, J. Reine Angew. Math. 473 (1996), 137–179.
  • [23] W. Hansen and N. Nadirashvili, “Isoperimetric inequalities in potential theory” in Proceedings from the International Conference on Potential Theory (Amersfoort, 1991), Potential Anal. 3, Springer, Dordrecht, 1994, 1–14.
  • [24] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Front. Math., Birkhäuser, Basel, 2006.
  • [25] A. Henrot and M. Pierre, Variation et optimisation de formes, Math. Appl. (Berlin) 48, Springer, Berlin, 2005.
  • [26] D. Kinderlehrer and L. Nirenberg, Regularity in free boundary problems, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (1977), 373–391.
  • [27] M.-T. Kohler-Jobin, Une méthode de comparaison isopérimétrique de fonctionnelles de domaines de la physique mathématique, I: Une démonstration de la conjecture isopérimétrique $P\lambda^{2}\ge\pi j^{4}_{0}/2$ de Pólya et Szegő, Z. Angew. Math. Phys. 29 (1978), 757–766.
  • [28] M.-T. Kohler-Jobin, Symmetrization with equal Dirichlet integrals, SIAM J. Math. Anal. 13 (1982), 153–161.
  • [29] F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory, Cambridge Stud. Adv. Math. 135, Cambridge Univ. Press, Cambridge, 2012.
  • [30] A. Melas, The stability of some eigenvalue estimates, J. Differential Geom. 36 (1992), 19–33.
  • [31] C. Müller, Analysis of Spherical Symmetries in Euclidean Spaces, Appl. Math. Sci. 129, Springer, New York, 1998.
  • [32] N. Nadirashvili, “Conformal maps and isoperimetric inequalities for eigenvalues of the Neumann problem” in Proceedings of the Ashkelon Workshop on Complex Function Theory (1996), Israel Math. Conf. Proc. 11, Bar-Ilan Univ., Ramat Gan, 1997, 197–201.
  • [33] R. Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly 86 (1979), 1–29.
  • [34] T. Povel, Confinement of Brownian motion among Poissonian obstacles in $\mathbb{R}^{d}$, $d\ge3$, Probab. Theory Related Fields 114 (1999), 177–205.
  • [35] X. Ren and J. Wei, On a two-dimensional elliptic problem with large exponent in nonlinearity, Trans. Amer. Math. Soc. 343, no. 2 (1994), 749–763.
  • [36] A.-S. Sznitman, Fluctuations of principal eigenvalues and random scales, Comm. Math. Phys. 189 (1997), 337–363.
  • [37] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353–372.
  • [38] G. Talenti, Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (1976), 697–718.