Duke Mathematical Journal

Finite energy global well-posedness of the Yang–Mills equations on R 1 + 3 : An approach using the Yang–Mills heat flow

Sung-Jin Oh

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this work, we propose a novel approach to the problem of gauge choice for the Yang–Mills equations on the Minkowski space R 1 + 3 . A crucial ingredient is the associated Yang–Mills heat flow. As this approach avoids the drawbacks of previous approaches, it is expected to be more robust and easily adaptable to other settings. Building on the author’s previous results, we prove, as the first application of our approach, finite energy global well-posedness of the Yang–Mills equations on R 1 + 3 . This is a classical result first proved by Klainerman and Machedon using local Coulomb gauges. As opposed to their method, the present approach avoids the use of Uhlenbeck’s lemma and hence does not involve localization in space-time.

Article information

Duke Math. J., Volume 164, Number 9 (2015), 1669-1732.

Received: 30 November 2012
Revised: 26 July 2014
First available in Project Euclid: 15 June 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35Q99: None of the above, but in this section
Secondary: 70S15: Yang-Mills and other gauge theories

Yang–Mills equations Yang–Mills heat flow gauge choice finite energy global well-posedness


Oh, Sung-Jin. Finite energy global well-posedness of the Yang–Mills equations on $\mathbb{R}^{1+3}$ : An approach using the Yang–Mills heat flow. Duke Math. J. 164 (2015), no. 9, 1669--1732. doi:10.1215/00127094-3119953. https://projecteuclid.org/euclid.dmj/1434377459

Export citation


  • [1] I. Bejenaru, A. D. Ionescu, C. E. Kenig, and D. Tataru, Global Schrödinger maps in dimensions $d\geq2$: Small data in the critical Sobolev spaces, Ann. of Math. (2) 173 (2011), 1443–1506.
  • [2] D. Bleeker, Gauge Theory and Variational Principles, Global Anal. Pure Appl. Ser. A 1, Addison-Wesley, Reading, Mass., 1981.
  • [3] N. Charalambous and L. Gross, The Yang–Mills heat semigroup on three-manifolds with boundary, Comm. Math. Phys. 317 (2013), 727–785.
  • [4] D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math. 39 (1986), 267–282.
  • [5] P. T. Chruściel and J. Shatah, Global existence of solutions of the Yang-Mills equations on globally hyperbolic four-dimensional Lorentzian manifolds, Asian J. Math. 1 (1997), 530–548.
  • [6] R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.
  • [7] G. David, J.-L. Journé, and S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana 1 (1985), 1–56.
  • [8] G. Dell’Antonio and D. Zwanziger, Every gauge orbit passes inside the Gribov horizon, Comm. Math. Phys. 138 (1991), 291–299.
  • [9] D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Differential Geom. 18 (1983), 157–162.
  • [10] B. Dodson, Bilinear Strichartz estimates for the Schrödinger map problem, preprint, arXiv:1210.5255v2 [math.AP].
  • [11] B. Dodson and P. Smith, A controlling norm for energy-critical Schrödinger maps, preprint, arXiv:1302.3879v1 [math.AP].
  • [12] S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. Lond. Math. Soc. (3) 50 (1985), 1–26.
  • [13] D. M. Eardley and V. Moncrief, The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space, I–II, Comm. Math. Phys. 83 (1982), 171–191 and 193–212.
  • [14] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160.
  • [15] V. N. Gribov, Quantization of non-Abelian gauge theories, Nuclear Physics B 139 (1978), 1–19.
  • [16] A. Grünrock, On the wave equation with quadratic nonlinearities in three space dimensions, J. Hyperbolic Differ. Equ. 8 (2011), 1–8.
  • [17] S. Klainerman, “The null condition and global existence to nonlinear wave equations” in Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1 (Santa Fe, N.M., 1984), Lectures in Appl. Math. 23, Amer. Math. Soc., Providence, 1986, 293–326.
  • [18] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), 1221–1268.
  • [19] S. Klainerman and M. Machedon, On the Maxwell–Klein–Gordon equation with finite energy, Duke Math. J. 74 (1994), 19–44.
  • [20] S. Klainerman and M. Machedon, Finite energy solutions of the Yang-Mills equations in $\mathbb{R}^{3+1}$, Ann. of Math. (2) 142 (1995), 39–119.
  • [21] S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications, Duke. Math. J. 81 (1995), 99–133.
  • [22] S. Klainerman and I. Rodnianski, Causal geometry of Einstein-vacuum spacetimes with finite curvature flux, Invent. Math. 159 (2005), 437–529.
  • [23] S. Klainerman and I. Rodnianski, Bilinear estimates on curved space-times, J. Hyperbolic Differ. Equ. 2 (2005), 279–291.
  • [24] S. Klainerman and I. Rodnianski, A geometric approach to the Littlewood-Paley theory, Geom. Funct. Anal. 16 (2006), 126–163.
  • [25] S. Klainerman and I. Rodnianski, Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux, Geom. Funct. Anal. 16 (2006), 164–229.
  • [26] S. Klainerman and D. Tataru, On the optimal local regularity for Yang-Mills equations in $\mathbf{R}^{4+1}$, J. Amer. Math. Soc. 12 (1999), 93–116.
  • [27] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, Wiley Interscience, New York, 1963.
  • [28] H. Lindblad, Counterexamples to local existence for semi-linear wave equations, Amer. J. Math. 118 (1996), 1–16.
  • [29] F. Nazarov, S. Treil, and A. Volberg, The $Tb$-theorem on non-homogeneous spaces, Acta Math. 190 (2003), 151–239.
  • [30] S.-J. Oh, Gauge choice for the Yang-Mills equations using the Yang-Mills heat flow and local well-posedness in $H^{1}$, J. Hyperbolic Differ. Equ. 11 (2014), 1–108.
  • [31] S.-J. Oh, Finite energy global well-posedness of the $(3+1)$-dimensional Yang-Mills equations using a novel Yang-Mills heat flow gauge, Ph.D. dissertation, Princeton University, Princeton, N.J., 2013.
  • [32] S.-J. Oh, Almost optimal local well-posedness of the $(1+4)$-dimensional Yang-Mills equations, in preparation.
  • [33] J. Råde, On the Yang-Mills heat equation in two and three dimensions, J. Reine Angew. Math. 431 (1992), 123–163.
  • [34] I. Segal, The Cauchy Problem for the Yang-Mills Equations, J. Funct. Anal. 33 (1979), 175–194.
  • [35] P. Smith, Conditional global regularity of Schrödinger maps: subthreshold dispersed energy, Anal. PDE 6 (2013), 601–686.
  • [36] P. Smith, Geometric renormalization below the ground state, Int. Math. Res. Not. IMRN 2012, no. 16, 3800–3844.
  • [37] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Ann. of Math. Stud. 63, Princeton Univ. Press, Princeton, 1970.
  • [38] M. Struwe, The Yang-Mills flow in four dimensions, Calc. Var. Partial Differential Equations 2 (1994), 123–150.
  • [39] T. Tao, Local well-posedness of the Yang-Mills equation in the Temporal Gauge below the energy norm, J. Differential Equations 189 (2003), 366–382.
  • [40] T. Tao, “Geometric renormalization of large energy wave maps” in Journées “Équations aux Dérivées Partielles” (Forges-les-Eaux, 2004), École Polytechnique, Palaiseau, 2004, Exp. No. XI.
  • [41] T. Tao, Global regularity of wave maps, III, arXiv:0805.4666 [math.AP]; IV, arXiv:0806.3592 [math.AP]; V, arXiv:0808.0368 [math.AP]; VI, arXiv:0906.2833 [math.AP]; VII, arXiv:0908.0776 [math.AP].
  • [42] X. Tolsa, Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón-Zygmund Theory, Progr. Math. 307, Birkhäuser, Cham, 2014.
  • [43] K. K. Uhlenbeck, Connections with $L^{p}$ bounds on curvature, Comm. Math. Phys. 83 (1982), 31–42.