Duke Mathematical Journal

Asymptotically conical Calabi–Yau manifolds, I

Ronan J. Conlon and Hans-Joachim Hein

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

This is the first of a series of articles on complete Calabi–Yau manifolds asymptotic to Riemannian cones at infinity. We begin by proving general existence and uniqueness results. The uniqueness part relaxes the decay condition O(rnε) needed in earlier work to O(rε), relying on some new ideas about harmonic functions. We then look at two classes of examples: crepant resolutions of cones (this includes a new class of Ricci-flat small resolutions associated with flag varieties) and affine deformations of cones. One focus here is the question of the precise rate of decay of the metric to its tangent cone. We prove that the optimal rate for the Stenzel metric on TSn is 2(n/(n1)).

Article information

Source
Duke Math. J., Volume 162, Number 15 (2013), 2855-2902.

Dates
First available in Project Euclid: 28 November 2013

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1385661570

Digital Object Identifier
doi:10.1215/00127094-2382452

Mathematical Reviews number (MathSciNet)
MR3161306

Zentralblatt MATH identifier
1283.53045

Subjects
Primary: 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.)
Secondary: 14J32: Calabi-Yau manifolds

Citation

Conlon, Ronan J.; Hein, Hans-Joachim. Asymptotically conical Calabi–Yau manifolds, I. Duke Math. J. 162 (2013), no. 15, 2855--2902. doi:10.1215/00127094-2382452. https://projecteuclid.org/euclid.dmj/1385661570


Export citation

References

  • [1] K. Altmann, The versal deformation of an isolated toric Gorenstein singularity, Invent. Math. 128 (1997), 443–479.
  • [2] A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math. (2) 69 (1959), 713–717.
  • [3] C. Arezzo, A. Ghigi, and G. P. Pirola, Symmetries, quotients and Kähler-Einstein metrics, J. Reine Angew. Math. 591 (2006), 177–200.
  • [4] C. Bănică and O. Stănăşilă, Algebraic Methods in the Global Theory of Complex Spaces, Editura Academiei, Bucharest, 1976.
  • [5] Y. V. Bazaĭkin and E. G. Mal’kovich, $\operatorname{Spin}(7)$-structures on complex line bundles and explicit Riemannian metrics with the holonomy group $\operatorname{SU}(4)$ (in Russian), Mat. Sb 202, no. 4, (2011), 3–30; English translation in Sb. Math. 202, no. 3–4, (2011), 467–493.
  • [6] A. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb. (3) 10, Springer, Berlin, 1987.
  • [7] O. Biquard and P. Gauduchon, “Hyper-Kähler metrics on cotangent bundles of Hermitian symmetric spaces” in Geometry and Physics (Aarhus, 1995), Lect. Notes Pure Appl. Math. 184, Dekker, New York, 1997, 287–298.
  • [8] A. Borel, Kählerian coset spaces of semisimple Lie groups, Proc. Natl. Acad. Sci. USA 40 (1954), 1147–1151.
  • [9] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, II, Amer. J. Math. 81 (1959), 315–382.
  • [10] C. P. Boyer and K. Galicki, Sasakian Geometry, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2008.
  • [11] D. Burns, On rational singularities in dimensions $>2$, Math. Ann. 211 (1974), 237–244.
  • [12] E. Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Sci. Éc. Norm. Supér. (4) 12 (1979), 269–294.
  • [13] P. Candelas and X. C. de la Ossa, Comments on conifolds, Nuclear Phys. B 342 (1990), 246–268.
  • [14] G. Carron, On the quasi-asymptotically locally Euclidean geometry of Nakajima’s metric, J. Inst. Math. Jussieu 10 (2011), 119–147.
  • [15] Y.-M. Chan, Desingularizations of Calabi-Yau $3$-folds with a conical singularity, Q. J. Math. 57 (2006), 151–181.
  • [16] J. Cheeger, Degeneration of Riemannian metrics under Ricci curvature bounds, Lezioni Fermiane, Scuola Normale Superiore, Pisa, 2001.
  • [17] J. Cheeger and G. Tian, On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay, Invent. Math. 118 (1994), 493–571.
  • [18] T. Christiansen and M. Zworski, Harmonic functions of polynomial growth on certain complete manifolds, Geom. Funct. Anal. 6 (1996), 619–627.
  • [19] R. Conlon, On the construction of asymptotically conical Calabi-Yau manifolds, Ph.D. dissertation, Imperial College London, London, England, 2011.
  • [20] R. Conlon and H.-J. Hein, Asymptotically conical Calabi-Yau manifolds, II, preprint, arXiv:1301.5312v1 [math.DG].
  • [21] M. Cvetič, G. W. Gibbons, H. Lü, and C. N. Pope, Ricci-flat metrics, harmonic forms and brane resolutions, Comm. Math. Phys. 232 (2003), 457–500.
  • [22] J.-P. Demailly and M. Paun, Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. (2) 159 (2004), 1247–1274.
  • [23] S. K. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996), 666–705.
  • [24] H. Donnelly, Harmonic functions on manifolds of nonnegative Ricci curvature, Int. Math. Res. Not. IMRN 2001, 429–434.
  • [25] R. Friedman, Simultaneous resolution of threefold double points, Math. Ann. 274 (1986), 671–689.
  • [26] J. E. Goodman, Affine open subsets of algebraic varieties and ample divisors, Ann. of Math. (2) 89 (1969), 160–183.
  • [27] R. Goto, Calabi-Yau structures and Einstein-Sasakian structures on crepant resolutions of isolated singularities, J. Math. Soc. Japan 64 (2012), 1005–1052.
  • [28] H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331–368.
  • [29] H. Grauert and R. Remmert, Theory of Stein Spaces, reprint of the 1979 translation, Classics Math., Springer, Berlin, 2004.
  • [30] H. Grauert and O. Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math. 11 (1970), 263–292.
  • [31] G.-M. Greuel and H. A. Hamm, Invarianten quasihomogener vollständiger Durchschnitte, Invent. Math. 49 (1978), 67–86.
  • [32] P. Griffiths and J. Harris, Principles of Algebraic Geometry, reprint of the 1978 original, Wiley, New York, 1994.
  • [33] M. Gross, Deforming Calabi-Yau threefolds, Math. Ann. 308 (1997), 187–220.
  • [34] H. Hamm, Lokale topologische Eigenschaften komplexer Räume, Math. Ann. 191 (1971), 235–252.
  • [35] H.-J. Hein, Weighted Sobolev inequalities under lower Ricci curvature bounds, Proc. Amer. Math. Soc. 139 (2011), 2943–2955.
  • [36] D. D. Joyce, Compact Manifolds with Special Holonomy, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2000.
  • [37] A. Kas and M. Schlessinger, On the versal deformation of a complex space with an isolated singularity, Math. Ann. 196 (1972), 23–29.
  • [38] J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, translation from 1998 Japanese original, Cambridge Tracts in Math. 134, Cambridge Univ. Press, Cambridge, 1998.
  • [39] P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989), 665–683.
  • [40] C. LeBrun, Fano manifolds, contact structures, and quaternionic geometry, Internat. J. Math. 6 (1995), 419–437.
  • [41] P. Li, Harmonic functions of linear growth on Kähler manifolds with nonnegative Ricci curvature, Math. Res. Lett. 2 (1995), 79–94.
  • [42] P. Li and J. Wang, Comparison theorem for Kähler manifolds and positivity of spectrum, J. Differential Geom. 69 (2005), 43–74.
  • [43] R. B. Lockhart and R. C. McOwen, Elliptic differential operators on noncompact manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 12 (1985), 409–447.
  • [44] E. G. Mal’kovich, On new explicit Riemannian metrics with holonomy group $\operatorname{SU}(2(n+1))$ (in Russian), Sibirsk. Mat. Zh. 52 (2011), no. 1, 95–99; English translation in Sib. Math. J. 52 (2011), no. 1, 74–77.
  • [45] S. Marshall, Deformations of special Lagrangian submanifolds, Ph.D. dissertation, University of Oxford, 2002, available at http://people.maths.ox.ac.uk/joyce/theses/MarshallDPhil.pdf (accessed 22August 2013).
  • [46] D. Martelli and J. Sparks, Resolutions of non-regular Ricci-flat Kähler cones, J. Geom. Phys. 59 (2009), 1175–1195.
  • [47] V. Minerbe, Rigidity for multi-Taub-NUT metrics, J. Reine Angew. Math. 656 (2011), 47–58.
  • [48] T. Pacini, Desingularizing isolated conical singularities: Uniform estimates via weighted Sobolev spaces, Comm. Anal. Geom. 21 (2013), 105–170.
  • [49] F. Reidegeld, Exceptional holonomy and Einstein metrics constructed from Aloff-Wallach spaces, Proc. Lond. Math. Soc. (3) 102 (2011), 1127–1160.
  • [50] I. Shafarevich (ed.), Algebraic Geometry, V: Fano Varieties, Encyclopaedia Math. Sci. 47, Springer, Berlin, 1999.
  • [51] J. Sparks, “Sasaki-Einstein manifolds” in Surveys in Differential Geometry, vol. XVI: Geometry of Special Holonomy and Related Topics, Surv. Differ. Geom. 16, International Press, Somerville, Mass., 2011, 265–324.
  • [52] M. B. Stenzel, Ricci-flat metrics on the complexification of a compact rank one symmetric space, Manuscripta Math. 80 (1993), 151–163.
  • [53] G. Tian and S.-T. Yau, Complete Kähler manifolds with zero Ricci curvature, II, Invent. Math. 106 (1991), 27–60.
  • [54] C. van Coevering, Ricci-flat Kähler metrics on crepant resolutions of Kähler cones, Math. Ann. 347 (2010), 581–611.
  • [55] C. van Coevering, Examples of asymptotically conical Ricci-flat Kähler manifolds, Math. Z. 267 (2011), 465–496.
  • [56] C. van Coevering, A construction of complete Ricci-flat Kähler manifolds, preprint, arXiv:0803.0112v5 [math.DG].
  • [57] C. van Coevering, Regularity of asymptotically conical Ricci-flat Kähler metrics, preprint, arXiv:0912.3946v5 [math.DG].
  • [58] C. Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spéc. 10, Soc. Math. Fr., Paris, 2002.