Duke Mathematical Journal

Generic strange duality for K3 surfaces

Alina Marian and Dragos Oprea
Appendix by Kota Yoshioka

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Strange duality is shown to hold over generic K3 surfaces in a large number of cases. The isomorphism for elliptic K3 surfaces is established first via Fourier–Mukai techniques. Applications to Brill–Noether theory for sheaves on K3 surfaces are also obtained. The appendix, written by Kota Yoshioka, discusses the behavior of the moduli spaces under change of polarization, as needed in the argument.

Article information

Duke Math. J., Volume 162, Number 8 (2013), 1463-1501.

First available in Project Euclid: 28 May 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14J60: Vector bundles on surfaces and higher-dimensional varieties, and their moduli [See also 14D20, 14F05, 32Lxx] 14D20: Algebraic moduli problems, moduli of vector bundles {For analytic moduli problems, see 32G13}


Marian, Alina; Oprea, Dragos. Generic strange duality for $K3$ surfaces. Duke Math. J. 162 (2013), no. 8, 1463--1501. doi:10.1215/00127094-2208643. https://projecteuclid.org/euclid.dmj/1369753568

Export citation


  • [A] T. Abe, Deformations of rank $2$ quasi-bundles and some strange dualities for rational surfaces, Duke Math. J. 155 (2010), 577–620.
  • [BL] A. Beauville and Y. Laszlo, Conformal blocks and generalized theta functions, Comm. Math. Phys. 164 (1994), 385–419.
  • [BH] M. Bernardara and G. Hein, The Euclid-Fourier-Mukai algorithm for elliptic surfaces, preprint, arXiv:1002.4986v2 [math.AG].
  • [Br] T. Bridgeland, Fourier-Mukai transform over elliptic $K3$ surfaces, J. Reine Angew. Math. 498 (1998), 115–133.
  • [BK] I. Burban and B. Kreussler, Fourier-Mukai transforms and semi-stable sheaves on nodal Weierstrass cubics, J. Reine Angew. Math. 584 (2005), 45–82.
  • [D1] G. Dǎnilǎ, Sections du fibré déterminant sur l’espace de modules des faisceaux semi-stables de rang $2$ sur le plan projectif, Ann. Inst. Fourier (Grenoble) 50 (2000), 1323–1374.
  • [D2] G. Dǎnilǎ, Résultats sur la conjecture de dualité étrange sur le plan projectif, Bull. Soc. Math. France 130 (2002), 1–33.
  • [EGL] G. Ellingsrud, L. Göttsche, and M. Lehn, On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001), 81–100.
  • [F] R. Friedman, Algebraic Surfaces and Holomorphic Vector Bundles, Springer, New York, 1998.
  • [G] L. Göttsche, Oberwolfach Workshop on Classical Algebraic Geometry, June 2008.
  • [KY] K. Kurihara and K. Yoshioka, Holomorphic vector bundles on non-algebraic tori of dimension $2$, Manuscripta Math. 126 (2008), 143–166.
  • [LeP1] J. Le Potier, “Fibré déterminant et courbes de saut sur les surfaces algébriques” in Complex Projective Geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture Notes Ser. 179, Cambridge Univ. Press, Cambridge, 1992, 213–240.
  • [LeP2] J. Le Potier, Dualité étrange sur le plan projectif, Lectures given at Luminy, December 1996.
  • [Li1] J. Li, Algebraic geometric interpretation of Donaldson’s polynomial invariants, J. Differential Geom. 37 (1993), 417–466.
  • [Li2] J. Li, “Picard groups of the moduli spaces of vector bundles over algebraic surfaces” in Moduli of Vector Bundles (Sanda, 1994; Kyoto, 1994), Lecture Notes in Pure and Appl. Math. 179, Dekker, New York, 1996, 129–146.
  • [MO1] A. Marian and D. Oprea, A Tour of Theta Dualities on Moduli Spaces of Sheaves, Contemp. Math. 465, Amer. Math. Soc., Providence, 2008, 175–202.
  • [MO2] A. Marian and D. Oprea, The Verlinde sheaves and strange duality over elliptic Noether-Lefschetz divisors, arXiv:1212.6533 [math.AG].
  • [MO3] A. Marian and D. Oprea, On the strange duality conjecture for abelian surfaces, arXiv:1207.5307 [math.AG].
  • [Muk] S. Mukai, Duality between $D(X)$ and $D(\hat{X})$ with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153–175.
  • [OG1] K. O’Grady, The weight-two Hodge structure of moduli spaces of sheaves on a $K3$ surface, J. Algebraic Geom. 6 (1997), 599–644.
  • [OG2] K. O’Grady, Involutions and linear systems on holomorphic symplectic manifolds, Geom. Funct. Anal. 15 (2005), 1223–1274.
  • [S] J. Sawon, Lagrangian fibrations on Hilbert schemes of points on $K3$ surfaces, J. Algebraic Geom. 16 (2007), 477–497.
  • [Sc] L. Scala, Dualité étrange de Le Potier et cohomologie du schéma de Hilbert ponctuel d’une surface, Gaz. Math. 112 (2007), 53–65.
  • [Y1] K. Yoshioka, “Brill-Noether problem for sheaves on $K3$ surfaces” in Proceedings of the Workshop Algebraic Geometry and Integrable Systems Related to String Theory, Surikaisekikenkyusho Kokyuroku 1232 (2001), 109–124.
  • [Y2] K. Yoshioka, Irreducibility of moduli spaces of vector bundles on $K3$ surfaces, preprint, arXiv:math/9907001v2 [math.AG].
  • [Yu] Y. Yuan, Determinant line bundles on moduli spaces of pure sheaves on rational surfaces and Strange Duality, preprint, arXiv:1005.3201v2 [math.AG].