Duke Mathematical Journal

Subordination by conformal martingales in Lp and zeros of Laguerre polynomials

Alexander Borichev, Prabhu Janakiraman, and Alexander Volberg

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Given martingales W and Z such that W is differentially subordinate to Z, Burkholder obtained the sharp inequality E|W|p(p1)pE|Z|p, where p=max {p,p/(p1)}. What happens if one of the martingales is also a conformal martingale? Bañuelos and Janakiraman proved that if p2 and W is a conformal martingale differentially subordinate to any martingale Z, then E|W|p[(p2p)/2]p/2E|Z|p. In this paper, we establish that if p2, Z is conformal, and W is any martingale subordinate to Z, then E|W|p[2(1zp)/zp]pE|Z|p, where zp is the smallest positive zero of a certain solution of the Laguerre ordinary differential equation. We also prove the sharpness of this estimate and an analogous one in the dual case for 1<p<2. Finally, we give an application of our results. Previous estimates on the Lp-norm of the Beurling–Ahlfors transform give at best Bp2p as p. We improve this to Bp1.3922p as p.

Article information

Source
Duke Math. J., Volume 162, Number 5 (2013), 889-924.

Dates
First available in Project Euclid: 29 March 2013

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1364562914

Digital Object Identifier
doi:10.1215/00127094-2081372

Mathematical Reviews number (MathSciNet)
MR3047469

Zentralblatt MATH identifier
1266.32006

Subjects
Primary: 32A55: Singular integrals
Secondary: 60G46: Martingales and classical analysis 42A15: Trigonometric interpolation 42B20: Singular and oscillatory integrals (Calderón-Zygmund, etc.)

Citation

Borichev, Alexander; Janakiraman, Prabhu; Volberg, Alexander. Subordination by conformal martingales in $L^{p}$ and zeros of Laguerre polynomials. Duke Math. J. 162 (2013), no. 5, 889--924. doi:10.1215/00127094-2081372. https://projecteuclid.org/euclid.dmj/1364562914


Export citation

References

  • [1] K. Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), 37–60.
  • [2] A. Baernstein and S. Montgomry-Smith, “Some conjectures about integral means of $\partial f$ and $\overline{\partial}f$” in Complex Analysis and Differential Equations, Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist. 64, Uppsala Univ., Uppsala, 1999, 92–109.
  • [3] R. Bañuelos, The foundational inequalities of D.L. Burkholder and some of their ramifications, Illinois J. Math. 54 (2010), 789–868.
  • [4] R. Bañuelos and P. Janakiraman, $L^{p}$–bounds for the Beurling–Ahlfors transform, Trans. Amer. Math. Soc. 360 (2008), 3603–3612.
  • [5] R. Bañuelos and P. J. Méndez-Hernández, Space-time Brownian motion and the Beurling–Ahlfors transform, Indiana Univ. Math. J. 52 (2003), 981–990.
  • [6] R. Bañuelos and A. Osȩkowski, Burkholder inequalities for submartingales, Bessel processes and conformal martingales, preprint, arXiv:1112.0551v1 [math.PR].
  • [7] R. Bañuelos and G. Wang, Sharp inequalities for martingales with applications to the Beurling–Ahlfors and Riesz transforms, Duke Math. J. 80 (1995), 575–600.
  • [8] A. Borichev, P. Janakiraman, A. Volberg, On Burkholder function for orthogonal martingales and zeros of Legendre polynomials, Amer. J. Math. 135 (2013), 207–236.
  • [9] D. Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab. 9 (1981), 997–1011.
  • [10] D. Burkholder, Boundary value problems and sharp estimates for the martingale transforms, Ann. Probab. 12 (1984), 647–702.
  • [11] D. Burkholder, “Martingales and Fourier analysis in Banach spaces” in Probability and Analysis (Varenna, 1985), Lecture Notes in Math. 1206, Springer, Berlin, 1986, 61–108.
  • [12] D. Burkholder, “An extension of classical martingale inequality” in Probability Theory and Harmonic Analysis (Cleveland, Ohio, 1983). Monogr. Textbooks Pure Appl. Math. 98, Dekker, New York, 1986, 21–30.
  • [13] D. Burkholder, “Sharp inequalities for martingales and stochastic integrals” in Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987), Astérisque No. 157–158, 1988, 75–94.
  • [14] D. Burkholder, A proof of the Peczynski’s conjecture for the Haar system, Studia Math. 91 (1988), 79–83.
  • [15] D. Burkholder, “Differential subordination of harmonic functions and martingales” in Harmonic Analysis and Partial Differential Equations (El Escorial 1987), Lecture Notes in Math. 1384, 1989, 1–23.
  • [16] D. Burkholder, “Explorations of martingale theory and its applications” in École d’Été de Probabilités de Saint-Flour XIX—1989, Lecture Notes in Math. 1464, 1991, 1–66.
  • [17] D. Burkholder, Strong differential subordination and stochastic integration, Ann. Prob. 22 (1994), 995–1025.
  • [18] D. Burkholder, “Martingales and singular integrals in Banach spaces” in Handbook of the Geometry of Banach Spaces, Vol. 1, North-Holland, Amsterdam, 2001, 233–269.
  • [19] E. A. Coddington, An Introduction to Ordinary Differential Operators, New York, Dover, 1989.
  • [20] E. A. Coddington and N. Levinson, The Theory of Ordinary Differential Operators, McGraw–Hill, New York, 1955.
  • [21] O. Dragičević, S. Treil, and A. Volberg, A theorem about $3$ quadratic forms, Int. Math. Res. Not. IMRN. 2008, Art. ID rnn072.
  • [22] O. Dragičević and A. Volberg, Sharp estimates of the Ahlfors–Beurling operator via averaging of martingale transform, Michigan Math. J. 51 (2003), 415–435.
  • [23] O. Dragičević and A. Volberg, Bellman function, Littlewood–Paley estimates, and asymptotics of the Ahlfors–Beurling operator in $L^{p}(\mathbb{C})$, $p\rightarrow\infty$, Indiana Univ. Math. J. 54 (2005), 971–995.
  • [24] J. Duoandikoetxea, Fourier Analysis, Grad. Stud. in Math. 29, Amer. Math. Soc., Providence, 2001.
  • [25] S. Geiss, S. Montgomery-Smith, and E. Saksman, On singular integral and martingale transforms, Trans. Amer. Math. Soc. 362 (2010), 553–575.
  • [26] T. Iwaniec, Extremal inequalities in Sobolev spaces and quasiconformal mappings, Z. Anal. Anwendungen 1 (1982), 1–16.
  • [27] P. Janakiraman, Orthogonality complex in martingale spaces and connections with the Beurling–Ahlfors transform, Illinois J. Math. 54 (2010), 1509–1563.
  • [28] I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, Grad. Texts in Math., Springer, New York, 1991.
  • [29] N. Krylov, Controlled Diffusion Processes, ed. 2, Appli. Math. 14, Springer, New York, 2008.
  • [30] O. Lehto, Remarks on the integrability of the derivatives of quasiconformal mappings, Ann. Acad. Sci. Fenn. Series A I Math. 371 (1965), 8 pp.
  • [31] F. Nazarov and S. Treil, The hunt for a Bellman function: Applications to estimates of singular integral operators and to other classical problems in harmonic analysis, St. Petersburg Math. J. 8 (1997), 721–824.
  • [32] F. Nazarov, S. Treil, and A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, J. Amer. Math. Soc. 12 (1999), 909–928.
  • [33] F. Nazarov, S. Treil, A. Volberg, “Bellman function in stochastic control and harmonic analysis” in Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl. 129, Birkhauser, Basel, 2001, 393–423.
  • [34] F. Nazarov and A. Volberg, Bellman function, two weighted Hilbert transforms and embeddings of the model spaces $K_{\theta}$, J. Anal. Math. 87 (2002), 385–414.
  • [35] F. Nazarov, A. Volberg, Heating of the Ahlfors–Beurling operator and estimates of its norm, St. Petersburg Math. J. 15 (2004), 563–573.
  • [36] S. Petermichl, A sharp bound for weighted Hilbert transform in terms of classical $A_{p}$ characteristic, Amer. J. Math. 129 (2007), 1355–1375.
  • [37] S. Petermichl and A. Volberg, Heating the Beurling operator: Weakly quasiregular maps on the plane are quasiregular, Duke Math. J. 112 (2002), 281–305.
  • [38] S. Pichorides, On the best values of the constants in the theorems of M. Riesz, Zygmund, and Kolmogorov, Studia Math. 44 (1972), 165–179.
  • [39] A. V. Pogorelov, Extrinsic Geometry of Convex Surfaces, Transl. Math. Monogr. 35, Amer. Math. Soc., Providence, 1973.
  • [40] L. C. G. Rogers and D. Williams, Diffusions, Markov Processes and Martingales, Vol 1, Cambridge Univ. Press, Cambridge, 2000.
  • [41] L. Slavin and A. Stokolos, The Bellman PDE for the dyadic maximal function and its solution, preprint, 2006.
  • [42] L. Slavin and V. Vasyunin, Sharp results in the integral-form John–Nirenberg inequality, Trans. Amer. Math. Soc. 363 (2011), 4135–4169.
  • [43] G. Szegö, Orthogonal Polynomials, 4th ed., Amer. Math. Soc., Colloq. Publ. 23, Amer. Math. Soc., Providence, 1975.
  • [44] V. Vasyunin, and A. Volberg, The Bellman function for certain two weight inequality: The case study, St. Petersburg Math. J. 18 (2007) 201–222.
  • [45] V. Vasyunin, A. Volberg, “Monge–Ampère equation and Bellman optimization of Carleson embedding theorems” in Linear and Complex Analysis, Amer. Math. Soc. Transl. Ser. 2, 226, Amer. Math. Soc., Providence, 2009, 195–238.
  • [46] V. Vasyunin, A. Volberg, Bellman Functions Technique in Harmonic Analysis, preprint, 2009, pp. 1–86. sashavolberg.wordpress.com
  • [47] A. Volberg, Bellman approach to some problems in Harmonic Analysis, Séminaires des Equations aux derivées partielles, Ecole Politéchnique, 2002, exposé XX, pp. 1–14.
  • [48] G. N. Watson, A treatise on the theory of Bessel functions, reprint of the 1994 second edition, Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1995.