Duke Mathematical Journal

Lipschitz regularity for inner-variational equations

Tadeusz Iwaniec, Leonid V. Kovalev, and Jani Onninen

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We obtain Lipschitz regularity results for a fairly general class of nonlinear first-order partial differential equations. These equations arise from the inner variation of certain energy integrals. Even in the simplest model case of the Dirichlet energy the inner-stationary solutions need not be differentiable everywhere; the Lipschitz continuity is the best possible. But the proofs, even in the Dirichlet case, turn out to rely on topological arguments. The appeal to the inner-stationary solutions in this context is motivated by the classical problems of existence and regularity of the energy-minimal deformations in the theory of harmonic mappings and certain mathematical models of nonlinear elasticity, specifically, neo-Hookean-type problems.

Article information

Duke Math. J., Volume 162, Number 4 (2013), 643-672.

First available in Project Euclid: 15 March 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 49N60: Regularity of solutions
Secondary: 35B65: Smoothness and regularity of solutions 73C50


Iwaniec, Tadeusz; Kovalev, Leonid V.; Onninen, Jani. Lipschitz regularity for inner-variational equations. Duke Math. J. 162 (2013), no. 4, 643--672. doi:10.1215/00127094-2079791. https://projecteuclid.org/euclid.dmj/1363355690

Export citation


  • [1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed., Pure Appl. Math. (Amst.) 140, Academic Press, Amsterdam, 2003.
  • [2] K. Astala, T. Iwaniec, and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Math. Ser. 48, Princeton Univ. Press, Princeton, 2009.
  • [3] K. Astala, T. Iwaniec, and G. Martin, Deformations of annuli with smallest mean distortion, Arch. Ration. Mech. Anal. 195 (2010), 899–921.
  • [4] K. Astala, T. Iwaniec, G. J. Martin, and J. Onninen, Extremal mappings of finite distortion, Proc. Lond. Math. Soc. (3) 91 (2005), 655–702.
  • [5] K. Astala, T. Iwaniec, and E. Saksman, Beltrami operators in the plane, Duke Math. J. 107 (2001), 27–56.
  • [6] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1976/77), 337–403.
  • [7] J. M. Ball, “Minimizers and the Euler-Lagrange equations” in Trends and Applications of Pure Mathematics to Mechanics (Palaiseau, 1983), Lecture Notes in Phys. 195, Springer, Berlin, 1984, 1–4.
  • [8] J. M. Ball, “Some open problems in elasticity” in Geometry, Mechanics, and Dynamics, Springer, New York, 2002, 3–59.
  • [9] P. Bauman, D. Phillips, and N. C. Owen, Maximal smoothness of solutions to certain Euler-Lagrange equations from nonlinear elasticity, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), 241–263.
  • [10] B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in $R^n$, Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 257–324.
  • [11] R. Courant, Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces, with an appendix by M. Schiffer, Springer, New York, 1977.
  • [12] J. Cristina, T. Iwaniec, L. V. Kovalev, and J. Onninen, The Hopf-Laplace equation: Harmonicity and regularity, to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci., preprint, arXiv:1011.5934 [math.CV].
  • [13] D. Faraco and L. Székelyhidi, Tartar’s conjecture and localization of the quasiconvex hull in $\mathbb{R}^{2\times 2}$, Acta Math. 200 (2008), 279–305.
  • [14] E. Heinz, An elementary analytic theory of the degree of mapping in $n$-dimensional space, J. Math. Mech. 8 (1959), 231–247.
  • [15] T. Iwaniec, “Quasiconformal mapping problem for general nonlinear systems of partial differential equations” in Symposia Mathematica, Vol. XVIII (Convegno sulle Transformazioni Quasiconformi e Questioni Connesse, INDAM, Rome, 1974), Academic Press, London, 1976, 501–517.
  • [16] T. Iwaniec, N.-T. Koh, L. V. Kovalev, and J. Onninen, Existence of energy-minimal diffeomorphisms between doubly connected domains, Invent. Math. 186 (2011), 667–707.
  • [17] T. Iwaniec, L. V. Kovalev, and J. Onninen, Hopf differentials and smoothing Sobolev homeomorphisms, Int. Math. Res. Not. IMRN 2012, no. 14 (2012), 3256–3277.
  • [18] J. Jost, A note on harmonic maps between surfaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 397–405.
  • [19] J. Jost, Two-Dimensional Geometric Variational Problems, Pure Appl. Math. (N.Y.), Wiley, Chichester, 1991.
  • [20] B. Kirchheim and L. Székelyhidi, On the gradient set of Lipschitz maps, J. Reine Angew. Math. 625 (2008), 215–229.
  • [21] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, 2nd ed., Grundlehren Math. Wiss. 126, Springer, New York, 1973.
  • [22] V. Marković, Harmonic diffeomorphisms of noncompact surfaces and Teichmüller spaces, J. Lond. Math. Soc. (2) 65 (2002), 103–114.
  • [23] G. J. Martin, The Teichmüller problem for mean distortion, Ann. Acad. Sci. Fenn. Math. 34 (2009), 233–247.
  • [24] G. J. Martin and M. McKubre-Jordens, Deformations with smallest weighted $L^{p}$ average distortion and Nitsche-type phenomena, J. Lond. Math. Soc. (2) 85 (2012), 282–300.
  • [25] R. Moser, On a variational problem with non-differentiable constraints, Calc. Var. Partial Differential Equations 29 (2007), 119–140.
  • [26] S. Rickman, Quasiregular Mappings, Ergeb. Math. Grenzgeb. (3) 26, Springer, Berlin, 1993.
  • [27] E. Sandier and S. Serfaty, Limiting vorticities for the Ginzburg-Landau equations, Duke Math. J. 117 (2003), 403–446.
  • [28] R. M. Schoen, “Analytic aspects of the harmonic map problem” in Seminar on Nonlinear Partial Differential Equations (Berkeley, Calif., 1983), Math. Sci. Res. Inst. Publ. 2, Springer, New York, 1984, 321–358.
  • [29] J. Sivaloganathan and S. J. Spector, On irregular weak solutions of the energy-momentum equations, Proc. Roy. Soc. Edinburgh Sect. A 141 (2011), 193–203.
  • [30] A. Taheri, Quasiconvexity and uniqueness of stationary points in the multi-dimensional calculus of variations, Proc. Amer. Math. Soc. 131 (2003), 3101–3107.
  • [31] H. Triebel, Theory of Function Spaces, Monogr. Math. 78, Birkhäuser, Basel, 1983.
  • [32] X. Yan, Maximal smoothness for solutions to equilibrium equations in 2D nonlinear elasticity, Proc. Amer. Math. Soc. 135 (2007), 1717–1724.