Duke Mathematical Journal
- Duke Math. J.
- Volume 162, Number 1 (2013), 49-94.
Holomorphic families of nonequivalent embeddings and of holomorphic group actions on affine space
Frank Kutzschebauch and Sam Lodin
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Abstract
We construct holomorphic families of proper holomorphic embeddings of into (), so that for any two different parameters in the family, no holomorphic automorphism of can map the image of the corresponding two embeddings onto each other. As an application to the study of the group of holomorphic automorphisms of , we derive the existence of families of holomorphic -actions on () so that different actions in the family are not conjugate. This result is surprising in view of the long-standing holomorphic linearization problem, which, in particular, asked whether there would be more than one conjugacy class of -actions on (with prescribed linear part at a fixed point).
Article information
Source
Duke Math. J., Volume 162, Number 1 (2013), 49-94.
Dates
First available in Project Euclid: 14 January 2013
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1358172074
Digital Object Identifier
doi:10.1215/00127094-1958969
Mathematical Reviews number (MathSciNet)
MR3011872
Zentralblatt MATH identifier
1266.32029
Subjects
Primary: 32M05: Complex Lie groups, automorphism groups acting on complex spaces [See also 22E10] 32H02: Holomorphic mappings, (holomorphic) embeddings and related questions
Secondary: 32Q28: Stein manifolds 32Q40: Embedding theorems 32Q45: Hyperbolic and Kobayashi hyperbolic manifolds
Citation
Kutzschebauch, Frank; Lodin, Sam. Holomorphic families of nonequivalent embeddings and of holomorphic group actions on affine space. Duke Math. J. 162 (2013), no. 1, 49--94. doi:10.1215/00127094-1958969. https://projecteuclid.org/euclid.dmj/1358172074
References
- [1] S. S. Abhyankar and T. T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148–166.Mathematical Reviews (MathSciNet): MR379502
- [2] E. Andersén, Volume-preserving automorphisms of $\mathbb{C}^{n}$, Complex Variables Theory Appl. 14 (1990), 223–235.Mathematical Reviews (MathSciNet): MR1048723
- [3] E. Andersén and L. Lempert, On the group of holomorphic automorphisms of $\mathbb{C}^{n}$, Invent. Math. 110 (1992), 371–388.Mathematical Reviews (MathSciNet): MR1185588
Zentralblatt MATH: 0770.32015
Digital Object Identifier: doi:10.1007/BF01231337 - [4] T. Asanuma, Non-linearizable algebraic $k^{\star}$-actions on affine spaces, Invent. Math. 138 (1999), 281–306.Mathematical Reviews (MathSciNet): MR1720185
Zentralblatt MATH: 0933.14027
Digital Object Identifier: doi:10.1007/s002220050379 - [5] S. Bochner and D. Montgomery, Locally compact groups of differentiable transformations, Ann. of Math. (2) 47 (1946), 639–653.Mathematical Reviews (MathSciNet): MR18187
Zentralblatt MATH: 0061.04407
Digital Object Identifier: doi:10.2307/1969226 - [6] S. Borell and F. Kutzschebauch, Non-equivalent embeddings into complex Euclidean spaces, Internat. J. Math. 17 (2006), 1033–1046.Mathematical Reviews (MathSciNet): MR2274009
Zentralblatt MATH: 1122.32009
Digital Object Identifier: doi:10.1142/S0129167X06003795 - [7] G. Buzzard and J. E. Fornæss, An embedding of $\mathbb{C} $ into $\mathbb{C}^{2}$ with hyperbolic complement, Math. Ann. 306 (1996), 539–546.Mathematical Reviews (MathSciNet): MR1415077
Zentralblatt MATH: 0864.32013
Digital Object Identifier: doi:10.1007/BF01445264 - [8] E. M. Chirka, Complex Analytic Sets, Math. Appl. (Soviet Ser.) 46, Kluwer, Dordrecht, 1989.Mathematical Reviews (MathSciNet): MR1111477
- [9] H. Derksen and F. Kutzschebauch, Nonlinearizable holomorphic group actions, Math. Ann. 311 (1998), 41–53.Mathematical Reviews (MathSciNet): MR1624259
Zentralblatt MATH: 0911.32042
Digital Object Identifier: doi:10.1007/s002080050175 - [10] H. Derksen and F. Kutzschebauch, Global holomorphic linearization of actions of compact Lie groups on $\mathbb{C}^{n}$, Contemp. Math. 222 (1999), 201–210.Mathematical Reviews (MathSciNet): MR1653052
Zentralblatt MATH: 0933.32032
Digital Object Identifier: doi:10.1090/conm/222/03162 - [11] D. A. Eisenman, Intrinsic measures on complex manifolds and holomorphic mappings, Mem. Amer. Math. Soc. 96 (1970), 80 pp.
- [12] Y. Eliashberg and M. Gromov, Embeddings of Stein manifolds of dimension $n$ into the affine space of dimension $3n/2+1$, Ann. of Math. (2) 136 (1992), 123–135.Mathematical Reviews (MathSciNet): MR1173927
Zentralblatt MATH: 0758.32012
Digital Object Identifier: doi:10.2307/2946547 - [13] O. Forster, Plongements des variétés de Stein, Comm. Math. Helv. 45 (1970), 170–184.
- [14] O. Forster and K. J. Ramspott, Analytische Modulgarben und Endromisbündel, Invent. Math. 2 (1966), 145–170.
- [15] F. Forstnerič, Interpolation by holomorphic automorphisms and embeddings in $\mathbb{C}^{n}$, J. Geom. Anal. 9 (1999), 93–117.
- [16] F. Forstnerič, The Oka principle for sections of stratified fiber bundles, Pure Appl. Math. Q. 6 (2010), 843–874.
- [17] F. Forstnerič, J. Globevnik, and J.-P. Rosay, Nonstraightenable complex lines in $\mathbb{C}^{2}$, Ark. Mat. 34 (1996), 97–101.Mathematical Reviews (MathSciNet): MR1396625
- [18] F. Forstnerič, B. Ivarsson, F. Kutzschebauch, and J. Prezelj, An interpolation theorem for proper holomorphic embeddings, Math. Ann. 338 (2007), 545–554.Mathematical Reviews (MathSciNet): MR2317930
Zentralblatt MATH: 1177.32003
Digital Object Identifier: doi:10.1007/s00208-007-0087-1 - [19] F. Forstnerič and J. Prezelj, Oka’s principle for holomorphic submersions with sprays, Math. Ann. 322 (2002), 633–666.Mathematical Reviews (MathSciNet): MR1905108
Zentralblatt MATH: 1011.32006
Digital Object Identifier: doi:10.1007/s002080100249 - [20] F. Forstnerič and J.-P. Rosay, Approximation of biholomorphic mappings by automorphisms of $\mathbb{C}^{n}$, Invent. Math. 112 (1993), 323–349.
- [21] G. Freudenburg and L. Moser-Jauslin, Embeddings of Danielewski surfaces, Math. Z. 245 (2003), 823–834.Mathematical Reviews (MathSciNet): MR2020713
Zentralblatt MATH: 1074.14054
Digital Object Identifier: doi:10.1007/s00209-003-0572-5 - [22] J. Globevnik, Interpolation by proper holomorphic embeddings of the disc into $\mathbb{C}^{2}$, Math. Res. Lett. 9 (2002), 567–577.
- [23] I. Graham and H. Wu, Some remarks on the intrinsic measures of Eisenman, Trans. Amer. Math. Soc. 288 (1985), no. 2, 625–660.Mathematical Reviews (MathSciNet): MR776396
Zentralblatt MATH: 0582.32034
Digital Object Identifier: doi:10.1090/S0002-9947-1985-0776396-4 - [24] H. Grauert, Approximationssätze für holomorphe Funktionen mit Werten in komplexen Räumen, Math. Ann. 133 (1957), 139–159.
- [25] H. Grauert, Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen, Math. Ann. 133 (1957), 450–472.Mathematical Reviews (MathSciNet): MR98198
Zentralblatt MATH: 0080.29202
Digital Object Identifier: doi:10.1007/BF01343758 - [26] H. Grauert, Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann. 135 (1958), 263–273.
- [27] M. Gromov, Oka’s principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989), 851–897.
- [28] P. Heinzner and F. Kutzschebauch, An equivariant version of Grauert’s Oka principle, Invent. Math. 119 (1995), 317–346.Mathematical Reviews (MathSciNet): MR1312503
Zentralblatt MATH: 0837.32004
Digital Object Identifier: doi:10.1007/BF01245185 - [29] A. T. Huckleberry, “Actions of groups of holomorphic transformations” in Several Complex Variables, VI, Encyclopaedia Math. Sci. 69, Springer, Berlin, 1990, 143–196.
- [30] B. Ivarsson and F. Kutzschebauch, A solution of Gromov’s Vaserstein problem, C. R. Acad. Sci. Paris 346 (2008), 1239–1243.Mathematical Reviews (MathSciNet): MR2473300
Zentralblatt MATH: 1160.32017
Digital Object Identifier: doi:10.1016/j.crma.2008.10.017 - [31] B. Ivarsson and F. Kutzschebauch, Holomorphic factorization of maps into $SL_{n}(\mathbb{C})$, Ann. Math. 175 (2012), 45–69.Mathematical Reviews (MathSciNet): MR2874639
Zentralblatt MATH: 1243.32007
Digital Object Identifier: doi:10.4007/annals.2012.175.1.3 - [32] S. Kaliman, Extensions of isomorphisms between affine algebraic subvarieties of $k^{n}$ to automorphisms of $k^{n}$, Proc. Amer. Math. Soc. 113 (1991), 325–334.
- [33] S. Kaliman, Isotopic embeddings of affine algebraic varieties into $\mathbb{C}^{n}$, Contemp. Math. 137 (1992), 291–295.
- [34] S. Kaliman, Exotic analytic structures and Eisenman intrinsic measures, Israel J. Math. 88 (1994), 411–423.Mathematical Reviews (MathSciNet): MR1303505
Zentralblatt MATH: 0821.14025
Digital Object Identifier: doi:10.1007/BF02937521 - [35] S. Kaliman and F. Kutzschebauch, Criteria for the density property of complex manifolds, Invent. Math. 172 (2008), 71–87.Mathematical Reviews (MathSciNet): MR2385667
Zentralblatt MATH: 1143.32014
Digital Object Identifier: doi:10.1007/s00222-007-0094-6 - [36] F. Kutzschebauch, Compact and reductive subgroups of the group of holomorphic automorphisms of $\mathbb{C}^{n}$, Sūrikaisekikenkyūsho Kōkyūroku 1033 (1998), 81–93.Mathematical Reviews (MathSciNet): MR1660631
- [37] F. Kutzschebauch, Andersén-Lempert-theory with parameters: A representation theoretic point of view, J. Algebra Appl. 4 (2005), 325–340.Mathematical Reviews (MathSciNet): MR2150667
Digital Object Identifier: doi:10.1142/S0219498805001216 - [38] F. Kutzschebauch, Some results on embedding Stein spaces with interpolation, Ark. Mat. 43 (2005), 419–425.Mathematical Reviews (MathSciNet): MR2173961
- [39] J. Prezelj, Interpolation of embeddings of Stein manifolds on discrete sets, Math. Ann. 326 (2003), 275–296.Mathematical Reviews (MathSciNet): MR1990911
Zentralblatt MATH: 1037.32024
Digital Object Identifier: doi:10.1007/s00208-003-0401-5 - [40] R. Remmert, Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convex, C. R. Acad. Sci. Paris 243 (1956), 118–121.Mathematical Reviews (MathSciNet): MR79808
- [41] J.-P. Rosay and W. Rudin, Holomorphic maps from $\mathbb{C}^{n}$ to $\mathbb{C}^{n}$, Trans. Amer. Math. Soc. 310 (1988), no. 1, 47–86.
- [42] J.-P. Rosay and W. Rudin, “Holomorphic embeddings of $\mathbb{C} $ in $\mathbb{C}^{n}$” in Several Complex Variables (Stockholm, 1987/1988), Math. Notes 38, Princeton Univ. Press, Princeton, 1993, 563–569.
- [43] J. Schürmann, Embeddings of Stein spaces into affine spaces of minimal dimension, Math. Ann. 307 (1997), 381–399.Mathematical Reviews (MathSciNet): MR1437045
Zentralblatt MATH: 0881.32007
Digital Object Identifier: doi:10.1007/s002080050040 - [44] V. Srinivas, On the embedding dimension of an affine variety, Math. Ann. 289 (1991), 125–132.Mathematical Reviews (MathSciNet): MR1087241
Zentralblatt MATH: 0725.14003
Digital Object Identifier: doi:10.1007/BF01446563 - [45] M. Suzuki, Propriétés topologiques des polynomes de deux variables complexes, et automorphismes algébriques de l’espace $C^{2}$, J. Math. Soc. Japan 26 (1974), 241–257.Mathematical Reviews (MathSciNet): MR338423
Digital Object Identifier: doi:10.2969/jmsj/02620241
Project Euclid: euclid.jmsj/1240435278 - [46] M. Suzuki, Sur les opérationes holomorphes du group additif complexe sur l’espace de deux variables complexes, Ann. Sci. École Norm. Sup. (4) 10 (1977), 517–546.Mathematical Reviews (MathSciNet): MR590938
- [47] D. Varolin, The density property for complex manifolds and geometric structures J. Geom. Anal. 11 (2001), 135–160.Mathematical Reviews (MathSciNet): MR1829353
Zentralblatt MATH: 0994.32019
Digital Object Identifier: doi:10.1007/BF02921959 - [48] E. F. Wold, Fatou-Bieberbach domains, Internat. J. Math. 16 (2005), 1119–1130.Mathematical Reviews (MathSciNet): MR2182211
Zentralblatt MATH: 1085.32008
Digital Object Identifier: doi:10.1142/S0129167X05003235 - [49] M. Zaĭdenberg, “An analytic cancellation theorem and exotic algebraic structures on $C^{n}$, $n\geq3$” in Colloque d’Analyse Complexe et Géométrie (Marseille, 1992), Astérisque 8, Soc. Math. France, Montrouge, 1993, 251–282.Mathematical Reviews (MathSciNet): MR1247763
Zentralblatt MATH: 0801.14001
Digital Object Identifier: doi: --- Either first page or author must be supplied.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- A long $\mathbb{C}^2$ without holomorphic functions
Boc Thaler, Luka and Forstnerič, Franc, Analysis & PDE, 2016 - On automorphism groups of affine surfaces
Kovalenko, Sergei, Perepechko, Alexander, and Zaidenberg, Mikhail, , 2017 - Proper holomorphic embeddings of finitely connected planar domains into ℂn
Majcen, Irena, Arkiv för Matematik, 2013
- A long $\mathbb{C}^2$ without holomorphic functions
Boc Thaler, Luka and Forstnerič, Franc, Analysis & PDE, 2016 - On automorphism groups of affine surfaces
Kovalenko, Sergei, Perepechko, Alexander, and Zaidenberg, Mikhail, , 2017 - Proper holomorphic embeddings of finitely connected planar domains into ℂn
Majcen, Irena, Arkiv för Matematik, 2013 - Euler characteristics and actions of automorphism groups of free groups
Ye, Shengkui, Algebraic & Geometric Topology, 2018 - Interpolation by conformal minimal surfaces and directed holomorphic curves
Alarcón, Antonio and Castro-Infantes, Ildefonso, Analysis & PDE, 2019 - A Rigidity Theorem for Proper Holomorphic Mappings between Generalized Pseudoellipsoids
HAYASHIMOTO, Atsushi, Tokyo Journal of Mathematics, 2016 - Non-isomorphism of some algebras of holomorphic functions
Nawrocki, M., Bulletin of the Belgian Mathematical Society - Simon Stevin, 2007 - Totally nonsymplectic Anosov actions on tori and nilmanifolds
Fisher, David, Kalinin, Boris, and Spatzier, Ralf, Geometry & Topology, 2011 - Fundamental groups of spaces of holomorphic maps and group actions
Yamaguchi, Kohhei, Journal of Mathematics of Kyoto University, 2004 - Two non-conjugate embeddings of $S_3 \times \mathbb{Z}_2$ into the Cremona group II
Iskovskikh, Vasilii Alekseevich, , 2008