Duke Mathematical Journal

Quadratic tangles in planar algebras

Vaughan F. R. Jones

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In planar algebras, we show how to project certain simple quadratic tangles onto the linear space spanned by linear and constant tangles. We obtain some corollaries about the principal graphs and annular structure of subfactors.

Article information

Duke Math. J., Volume 161, Number 12 (2012), 2257-2295.

First available in Project Euclid: 6 September 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46L37: Subfactors and their classification
Secondary: 18D50: Operads [See also 55P48] 16T99: None of the above, but in this section 57M27: Invariants of knots and 3-manifolds


Jones, Vaughan F. R. Quadratic tangles in planar algebras. Duke Math. J. 161 (2012), no. 12, 2257--2295. doi:10.1215/00127094-1723608. https://projecteuclid.org/euclid.dmj/1346936107

Export citation


  • [1] M. Asaeda and U. Haagerup, Exotic subfactors of finite depth with Jones indices ${(5+\sqrt{13})}/{2}$ and ${(5+\sqrt{17})}/{2}$, Comm. Math. Phys. 202 (1999), 1–63.
  • [2] S. Bigelow, S. Morrison, E. Peters, and N. Snyder, Constructing the extended Haagerup planar algebra, preprint, arXiv:0909.4099v2 [math.QA]
  • [3] D. Bisch and V. F. R. Jones, Algebras associated to intermediate subfactors, Invent. Math. 128 (1997), 89–157.
  • [4] D. E. Evans and Y. Kawahigashi, Quantum Symmetries on Operator Algebras, Oxford Math. Monogr., Oxford University Press, New York, 1998.
  • [5] F. M. Goodman, P. de la Harpe, and V. F. R. Jones, Coxeter Graphs and Towers of Algebras, Math. Sci. Res. Inst. Publ. 14, Springer, New York, 1989.
  • [6] J. J. Graham and G. I. Lehrer, The representation theory of affine Temperley-Lieb algebras, Enseign. Math. (2) 44 (1998), 173–218.
  • [7] P. Grossman and V. F. R. Jones, Intermediate subfactors with no extra structure, J. Amer. Math. Soc. 20 (2007), 219–265.
  • [8] U. Haagerup, “Principal graphs of subfactors in the index range $4<3+\sqrt{2}$” in Subfactors (Kyuzeso, 1993), World Scientific, River Edge, N.J., 1994, 1–38.
  • [9] T. Halverson and A. Ram, Partition algebras, European J. Combin. 26 (2005), 869–921.
  • [10] M. Izumi, V. F. R. Jones, S. Morrison, and N. Snyder, Subfactors of index less than 5, Part 3: Quadruple points, preprint, to appear in Comm. Math. Phys.
  • [11] V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1–25.
  • [12] V. F. R. Jones, “The Potts model and the symmetric group” in Subfactors (Kyuzeso, 1993), World Scientific, River Edge, N.J., 1994, 259–267.
  • [13] V. F. R. Jones, A quotient of the affine Hecke algebra in the Brauer algebra, Enseign. Math. (2) 40 (1994), 313–344.
  • [14] V. F. R. Jones, “The annular structure of subfactors” in Essays on Geometry and Related Topics, 1, 2, Monogr. Enseign. Math. 38, Enseignement Math., Geneva, 2001, 401–463.
  • [15] V. F. R. Jones, Planar algebras, I, preprint, arXiv:math9909027v1 [math.QA]
  • [16] V. F. R. Jones, Quadratic tangles in planar algebras, in preparation.
  • [17] V. F. R. Jones and S. A. Reznikoff, Hilbert space representations of the annular Temperley-Lieb algebra, Pacific J. Math. 228 (2006), 219–249
  • [18] P. P. Martin, The partition algebra and the Potts model transfer matrix spectrum in high dimensions, J. Phys. A 33 (2000), 3669–3695.
  • [19] S. Morrison, D. Penneys, E. Peters, and N. Snyder, Subfactors of index less than 5, Part 2: Triple points, preprint, Internat. J. Math. 23 (2012), 33pp.
  • [20] S. Morrison and N. Snyder, Subfactors of index less than 5, Part 1: The principal graph odometer, Comm. Math. Phys. 312 (2012), 1–35.
  • [21] E. Peters, A planar algebra construction of the Haagerup subfactor, Internat. J. Math. 21 (2010), 987–1045
  • [22] S. Popa, Classification of subfactors: The reduction to commuting squares, Invent. Math. 101 (1990), 19–43.
  • [23] S. Popa, An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math. 120 (1995), 427–445.
  • [24] H. N. V. Temperley and E. H. Lieb, Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: Some exact results for the “percolation” problem, Proc. Roy. Soc. Lond. Ser. A 322 (1971), 251–280.
  • [25] H. Wenzl, On sequences of projections, C. R. Math. Acad. Sci. Soc. R. Can. 9 (1987), 5–9.