Duke Mathematical Journal

The energy-critical defocusing NLS on T3

Alexandru D. Ionescu and Benoit Pausader

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We prove global well-posedness in H1(T3) for the energy-critical defocusing initial-value problem (it+Δ)u=u|u|4, u(0)=ϕ.

Article information

Source
Duke Math. J. Volume 161, Number 8 (2012), 1581-1612.

Dates
First available in Project Euclid: 22 May 2012

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1337690408

Digital Object Identifier
doi:10.1215/00127094-1593335

Mathematical Reviews number (MathSciNet)
MR2931275

Zentralblatt MATH identifier
1245.35119

Subjects
Primary: 35Q55: NLS-like equations (nonlinear Schrödinger) [See also 37K10]
Secondary: 42B37: Harmonic analysis and PDE [See also 35-XX]

Citation

Ionescu, Alexandru D.; Pausader, Benoit. The energy-critical defocusing NLS on ${\mathbb{T}}^{3}$. Duke Math. J. 161 (2012), no. 8, 1581--1612. doi:10.1215/00127094-1593335. https://projecteuclid.org/euclid.dmj/1337690408


Export citation

References

  • [1] N. Anantharaman and F. Macia, Semiclassical measures for the Schrödinger equation on the torus, preprint, arXiv:1005.0296v2 [math.FA]
  • [2] J. Bourgain, Exponential sums and nonlinear Schrödinger equations, Geom. Funct. Anal. 3 (1993), 157–178.
  • [3] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I: Schrödinger equations, Geom. Funct. Anal. 3 (1993), 107–156.
  • [4] J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc. 12 (1999), 145–171.
  • [5] N. Burq, P. Gérard, and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math. 126 (2004), 569–605.
  • [6] N. Burq, P. Gérard, and N. Tzvetkov, Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math. 159 (2005), 187–223.
  • [7] N. Burq, P. Gérard, and N. Tzvetkov, Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations, Ann. Sci. École Norm. Sup. 38 (2005), 255–301.
  • [8] T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes Math. 10, Amer. Math. Soc., Providence, 2003.
  • [9] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in3, Ann. of Math. (2) 167 (2008), 767–865.
  • [10] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math. 181 (2010), 39–113.
  • [11] P. Gérard and V. Pierfelice, Nonlinear Schrödinger equation on four-dimensional compact manifolds, Bull. Soc. Math. France 138 (2010), 119–151.
  • [12] M. Grillakis, On nonlinear Schrödinger equations, Comm. Partial Differential Equations 25 (2000), 1827–1844.
  • [13] Z. Hani, Global well-posedness of the cubic nonlinear Schrödinger equation on compact manifolds without boundary, preprint, arXiv:1008.2826v2 [math.AP]
  • [14] S. Herr, The quintic nonlinear Schrödinger equation on three-dimensional Zoll manifolds, to appear in Amer. J. Math., preprint, arXiv:1101.4565v3 [math.AP]
  • [15] S. Herr, D. Tataru, and N. Tzvetkov, Global well-posedness of the energy critical nonlinear Schrödinger equation with small initial data in H1(T3), Duke Math. J. 159 (2011), 329–349.
  • [16] S. Herr, D. Tataru, and N. Tzvetkov, Strichartz estimates for partially periodic solutions to Schrödinger equations in 4d and applications, preprint, arXiv:1011.0591v1 [math.AP]
  • [17] A. D. Ionescu, B. Pausader, and G. Staffilani, On the global well-posedness of energy-critical Schrödinger equations in curved spaces, to appear in Anal. Partial Differential Equations, preprint, arXiv:1008.1237v2 [math.AP]
  • [18] A. D. Ionescu, B. Pausader, and G. Staffilani, Global wellposedness of the energy-critical defocusing NLS on ${\mathbb{R}}\times\mathbb{T}^{3}$, preprint, arXiv:1101.4527v2 [math.AP]
  • [19] R. Killip and M. Visan, Global well-posedness and scattering for the defocusing quintic NLS in three dimensions, to appear in Anal. Partial Differential Equations, preprint, arXiv:1102.1192v2 [math.AP]
  • [20] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math. 166 (2006), 645–675.
  • [21] S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations 175 (2001), 353–392.
  • [22] F. Macia, High-frequency propagation for the Schrödinger equation on the torus, J. Funct. Anal. 258 (2010), 933–955.
  • [23] E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in1+4, Amer. J. Math. 129 (2007), 1–60.
  • [24] H. Takaoka and N. Tzvetkov, On 2Dnonlinear Schrödinger equations with data on $\mathbb{R}\times\mathbb{T}$, J. Funct. Anal. 182 (2001), 427–442.
  • [25] T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Reg. Conf. Ser. Math. 106, Amer. Math. Soc., Providence, 2006.
  • [26] N. Tzvetkov and N. Visciglia, Small data scattering for the nonlinear Schrödinger equation on product spaces, preprint, arXiv:1011.6185v2 [math.AP]
  • [27] M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J. 138 (2007), 281–374.