Duke Mathematical Journal

Quantum K-theory of Grassmannians

Anders S. Buch and Leonardo C. Mihalcea

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We show that (equivariant) K-theoretic 3-point Gromov-Witten invariants of genus zero on a Grassmann variety are equal to triple intersections computed in the (equivariant) K-theory of a two-step flag manifold, thus generalizing an earlier result of Buch, Kresch, and Tamvakis. In the process we show that the Gromov-Witten variety of curves passing through three general points is irreducible and rational. Our applications include Pieri and Giambelli formulas for the quantum K-theory ring of a Grassmannian, which determine the multiplication in this ring. We also compute the dual Schubert basis for this ring and show that its structure constants satisfy S3-symmetry. Our formula for Gromov-Witten invariants can be partially generalized to cominuscule homogeneous spaces by using a construction of Chaput, Manivel, and Perrin.

Article information

Source
Duke Math. J., Volume 156, Number 3 (2011), 501-538.

Dates
First available in Project Euclid: 9 February 2011

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1297258908

Digital Object Identifier
doi:10.1215/00127094-2010-218

Mathematical Reviews number (MathSciNet)
MR2772069

Zentralblatt MATH identifier
1213.14103

Subjects
Primary: 14N35: Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants [See also 53D45]
Secondary: 19E08: $K$-theory of schemes [See also 14C35] 14M15: Grassmannians, Schubert varieties, flag manifolds [See also 32M10, 51M35] 14N15: Classical problems, Schubert calculus 14E08: Rationality questions [See also 14M20]

Citation

Buch, Anders S.; Mihalcea, Leonardo C. Quantum $K$ -theory of Grassmannians. Duke Math. J. 156 (2011), no. 3, 501--538. doi:10.1215/00127094-2010-218. https://projecteuclid.org/euclid.dmj/1297258908


Export citation

References

  • D. Anderson, S. Griffeth, and E. Miller, Positivity and Kleiman transversality in equivariant $K$-theory of homogeneous spaces, preprint.
  • A. Bertram, Quantum Schubert calculus, Adv. Math. 128 (1997), 289–305.
  • E. Bierstone and P. D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), 207–302.
  • M. Brion, “Lectures on the geometry of flag varieties” in Topics in Cohomological Studies of Algebraic Varieties, Trends Math., Birkhäuser, Basel, 2005, 33–85.
  • M. Brion and S. Kumar, Frobenius splitting methods in geometry and representation theory, Prog. Math. 231, Birkhäuser, Boston, 2005.
  • A. S. Buch, Grothendieck classes of quiver varieties, Duke Math. J. 115 (2002), 75–103.
  • —, A Littlewood-Richardson rule for the $K$\!-theory of Grassmannians, Acta Math. 189 (2002), 37–78.
  • —, Quantum cohomology of Grassmannians, Compositio Math. 137 (2003), 227–235.
  • —, “Combinatorial $K$-theory” in Topics in Cohomological Studies of Algebraic Varieties, Trends Math., Birkhäuser, Basel, 2005, 87–103.
  • A. S. Buch, P.-E. Chaput, L. L. Mihalcea, N. Perrin, Finiteness of cominuscule quantum k-theory, preprint.
  • A. S. Buch, A. Kresch, and H. Tamvakis, Gromov-Witten invariants on Grassmannians, J. Amer. Math. Soc. 16 (2003), 901–915.
  • —, Quantum Pieri rules for isotropic Grassmannians, preprint.
  • A. S. Buch and V. Ravikumar, Pieri rules for the $K$-theory of cominuscule Grassmannians, preprint.
  • P.-E. Chaput, L. Manivel, and N. Perrin, Quantum cohomology of minuscule homogeneous spaces, Transform. Groups 13 (2008), 47–89.
  • P.-E. Chaput and N. Perrin, Rationality of some Gromov-Witten varieties and application to quantum $K$-theory, preprint.
  • N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser, Boston, 1997.
  • I. Ciocan-Fontanine, On quantum cohomology rings of partial flag varieties, Duke Math. J. 98 (1999), 485–524.
  • I. Coskun and R. Vakil, Geometric positivity in the cohomology of homogeneous spaces and generalized Schubert calculus, preprint.
  • D. Edidin and W. Graham, Riemann-Roch for equivariant Chow groups, Duke Math. J. 102 (2000), 567–594.
  • S. Fomin, S. Gelfand, and A. Postnikov, Quantum Schubert polynomials, J. Amer. Math. Soc. 10 (1997), 565–596.
  • W. Fulton, Intersection Theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1998.
  • W. Fulton and R. Pandharipande, “Notes on stable maps and quantum cohomology” in Algebraic Geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math. 62, Amer. Math. Soc., Providence, 1997, 45–96.
  • W. Fulton and C. Woodward, On the quantum product of Schubert classes, J. Algebraic Geom. 13 (2004), 641–661.
  • A. B. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices 1996, no. 13, 613–663.
  • —, On the WDVV equation in quantum $K$-theory, dedicated to William Fulton on the occasion of his 60th birthday, Michigan Math. J. 48 (2000), 295–304,
  • A. Givental and B. Kim, Quantum cohomology of flag manifolds and Toda lattices, Comm. Math. Phys. 168 (1995), 609–641.
  • A. Givental and Y.-P. Lee, Quantum $K$-theory on flag manifolds, finite-difference Toda lattices and quantum groups, Invent. Math. 151 (2003), 193–219.
  • W. Graham and S. Kumar, On positivity in ${T}$-equivariant ${K}$-theory of flag varieties, preprint.
  • S. Griffeth and A. Ram, Affine Hecke algebras and the Schubert calculus, European J. Combin. 25 (2004), 1263–1283.
  • P. Griffiths and J. Harris, Principles of Algebraic Geometry, reprint of the 1978 original, Wiley Classics Library, Wiley, New York, 1994.
  • R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977.
  • B. Kim, On equivariant quantum cohomology, Internat. Math. Res. Notices 1996, no. 17, 841–851.
  • —, Quantum cohomology of flag manifolds $G/B$ and quantum Toda lattices, Ann. of Math. (2) 149 (1999), 129–148.
  • B. Kim and R. Pandharipande, “The connectedness of the moduli space of maps to homogeneous spaces” in Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Sci., River Edge, N.J., 2001, 187–201.
  • S. L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297.
  • A. Knutson, A conjectural rule for ${\rm GL}_n$ Schubert calculus, preprint, 1999.
  • A. Knutson and T. Tao, Puzzles and (equivariant) cohomology of Grassmannians, Duke Math. J. 119 (2003), 221–260.
  • J. Kollár, Higher direct images of dualizing sheaves, I, Ann. of Math. (2) 123 (1986), 11–42.
  • M. Kontsevich, “Enumeration of rational curves via torus actions” in The Moduli Space of Curves (Texel Island, 1994), Progr. Math. 129, Birkhäuser, Boston, 1995, 335–368.
  • M. Kontsevich and Y. Manin, Quantum cohomology of a product, with an appendix by R. Kaufmann, Invent. Math. 124 (1996), 313–339.
  • T. Lam and M. Shimozono, Quantum cohomology of ${G/P}$ and homology of affine Grassmannian, preprint.
  • Y.-P. Lee, Quantum $K$-theory, I; Foundations, Duke Math. J. 121 (2004), 389–424.
  • Y.-P. Lee and R. Pandharipande, A reconstruction theorem in quantum cohomology and quantum $K$-theory, Amer. J. Math. 126 (2004), 1367–1379.
  • C. Lenart, Combinatorial aspects of the $K$-theory of Grassmannians, Ann. Comb. 4 (2000), 67–82.
  • C. Lenart and T. Maeno, Quantum Grothendieck polynomials, preprint.
  • C. Lenart and A. Postnikov, Affine Weyl groups in $K$-theory and representation theory, Int. Math. Res. Not. 2007, no. 12, art. ID rnm038.
  • —, Equivariant quantum Schubert calculus, Adv. Math. 203 (2006), 1–33.
  • —, Positivity in equivariant quantum Schubert calculus, Amer. J. Math. 128 (2006), 787–803.
  • L. C. Mihalcea, On equivariant quantum cohomology of homogeneous spaces: Chevalley formulae and algorithms, Duke Math. J. 140 (2007), 321–350.
  • E. Miller and D. E. Speyer, A Kleiman-Bertini theorem for sheaf tensor products, preprint.
  • R. Pandharipande, The canonical class of $\overline{M}\sb {0,n}(\bold P\sp r,d)$ and enumerative geometry, Internat. Math. Res. Notices 1997, no. 4, 173–186.
  • A. Postnikov, Affine approach to quantum Schubert calculus, Duke Math. J. 128 (2005), 473–509.
  • Z. Reichstein and B. Youssin, Equivariant resolution of points of indeterminacy, Proc. Amer. Math. Soc. 130 (2002), 2183–2187.
  • K. Rietsch, Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties, J. Amer. Math. Soc. 16 (2003), 363–392.
  • S. J. Sierra, A general homological Kleiman-Bertini theorem.
  • H. Tamvakis, “Quantum cohomology of isotropic Grassmannians” in Geometric Methods in Algebra and Number Theory, Progr. Math. 235, Birkhäuser, Boston, 2005, 311–338.
  • J. F. Thomsen, Irreducibility of $\overline{M}\sb {0,n}(G/P,\beta)$, Internat. J. Math. 9 (1998), 367–376.
  • R. Vakil, A geometric Littlewood-Richardson rule, Appendix A written with A. Knutson, Ann. of Math. (2) 164 (2006), 371–421.
  • O. E. Villamayor, Patching local uniformizations, Ann. Sci. École Norm. Sup. (4) 25 (1992), 629–677.
  • E. Witten, “Two-dimensional gravity and intersection theory on moduli space” in Surveys in Differential Geometry (Cambridge, Mass, 1990), Lehigh Univ. Press, Bethlehem, Pa., 1991, 243–310.
  • C. T. Woodward, On D. Peterson's comparison formula for Gromov-Witten invariants of $G/P$, Proc. Amer. Math. Soc. 133 (2005), 1601–1609.
  • A. Yong, Degree bounds in quantum Schubert calculus, Proc. Amer. Math. Soc. 131 (2003), 2649–2655.
  • F. L. Zak, Tangents and secants of algebraic varieties, Trans. Math. Monogr. 127, Amer. Math. Soc., Providence, 1993.