Duke Mathematical Journal

Poisson deformations of affine symplectic varieties

Yoshinori Namikawa

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We prove that the Poisson deformation functor of an affine (singular) symplectic variety is unobstructed. As a corollary, we prove the following result. For an affine symplectic variety X with a good C*-action (where its natural Poisson structure is positively weighted), the following are equivalent.

(1) X has a crepant projective resolution.

(2) X has a smoothing by a Poisson deformation.

A typical example is (the normalization) of a nilpotent orbit closure in a complex simple Lie algebra. By the theorem, one can see which orbit closure has a smoothing by a Poisson deformation.

Article information

Source
Duke Math. J., Volume 156, Number 1 (2011), 51-85.

Dates
First available in Project Euclid: 16 December 2010

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1292509118

Digital Object Identifier
doi:10.1215/00127094-2010-066

Mathematical Reviews number (MathSciNet)
MR2746388

Zentralblatt MATH identifier
1208.14028

Subjects
Primary: 14J 14E 32G
Secondary: 14B 32J

Citation

Namikawa, Yoshinori. Poisson deformations of affine symplectic varieties. Duke Math. J. 156 (2011), no. 1, 51--85. doi:10.1215/00127094-2010-066. https://projecteuclid.org/euclid.dmj/1292509118


Export citation

References

  • A. Beauville, Symplectic singularities, Invent. Math. 139 (2000), 541–549.
  • C. Birkar, P. Cascini, C. Hacon, and J. Mckernan Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405–468.
  • D. H. Collingwood and W. M. Mcgovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Math. Ser., Van Reinhold, New York, 1993.
  • B. Fu, Symplectic resolutions for nilpotent orbits, Invent. Math. 151 (2003), 167–186.
  • —, On Q-factorial terminalizations of nilpotent orbits, to appear in J. Math. Pures Appl., preprint.
  • V. Ginzburg and D. Kaledin, Poisson deformations of symplectic quotient singularities, Adv. Math. 186 (2004), 1–57.
  • A. Grothendieck, Éléments de géométrie algebrique, III: Étude cohomologique des faisceaux cohérents I, Inst. Hautes Études Sci. Publ. Math. 11, (1961).
  • A. Grothendieck, On the de Rham cohomology of algebraic varieties, Inst. Hautes Ètudes Sci. Publ. Math. 29 (1966), 95–103.
  • D. Kaledin, Symplectic singularities from the Poisson view point, J. Reine Angew. Math. 600 (2006), 135–156.
  • J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286–294. MR 0182927
  • Y. Namikawa, Deformation theory of singular symplectic n-folds, Math. Ann. 319 (2001), 597–623.
  • —, On deformations of Q-factorial symplectic varieties, J. Reine Angew. Math. 599 (2006), 97–110.
  • —, Birational geometry and deformations of nilpotent orbits, Duke Math. J. 143 (2008), 375–405.
  • —, Flops and Poisson deformations of symplectic varieties, Publ. Res. Inst. Math. Sci. 44 (2008), 259–314.
  • —, Induced nilpotent orbits and birational geometry, Adv. Math. 222 (2009), 547–564.
  • M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208–222.
  • P. Slodowy, Four Lectures on Simple Groups and Singularities, Comm. Math. Inst. Rijksuniversiteit Utrecht 11, Rijksuniversiteit Utrecht Math. Inst., Utrecht, 1980.
  • —, Simple singularities and simple algebraic groups, Lecture Notes in Math. 815, Springer, Berlin, 1980.
  • J. H. M. Steenbrink, “Mixed Hodge structure on the vanishing cohomology” Real and Complex Singularities (Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, 525–563.
  • J. M. Wahl, Equisingular deformations of normal surface singularities, I, Ann. of Math. (2) 104 (1976), 325–356.
  • J. J. Wavrik, “Obstructions to the existence of a space of moduli” in Global Analysis (Papers in Honor of K. Kodaira), Univ. of Tokyo Press and Princeton Univ. Press, Tokyo and Princeton, 1969, 403–414.
  • H. Yamada, Lie group theoretical construction of period mapping, Math. Z. 220 (1995), 231–255. \endthebibliography