Duke Mathematical Journal

MV-polytopes via affine buildings

Michael Ehrig

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

For an algebraic group G, Anderson introduced the notion of Mirković-Vilonen (MV) polytopes as images of MV-cycles under the moment map of the affine Grassmannian. It was shown by Kamnitzer that MV-polytopes and their corresponding cycles can be described as solutions of the tropical Plücker relations. Another construction of MV-cycles, by Gaussent and Littelmann, can be given by using LS-galleries, a more discrete version of Littelmann's path model.

This article gives a direct combinatorial construction of the MV-polytopes using LS-galleries. This construction is linked to the retractions of the affine building and the Bott-Samelson variety corresponding to G, leading to a type-independent definition of MV-polytopes not involving the tropical Plücker relations.

Article information

Source
Duke Math. J., Volume 155, Number 3 (2010), 433-482.

Dates
First available in Project Euclid: 16 November 2010

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1289916770

Digital Object Identifier
doi:10.1215/00127094-2010-062

Mathematical Reviews number (MathSciNet)
MR2738580

Zentralblatt MATH identifier
1209.22007

Subjects
Primary: 22E46: Semisimple Lie groups and their representations
Secondary: 14M15: Grassmannians, Schubert varieties, flag manifolds [See also 32M10, 51M35] 17B10: Representations, algebraic theory (weights)

Citation

Ehrig, Michael. MV-polytopes via affine buildings. Duke Math. J. 155 (2010), no. 3, 433--482. doi:10.1215/00127094-2010-062. https://projecteuclid.org/euclid.dmj/1289916770


Export citation

References

  • J. E. Anderson, A polytope calculus for semisimple groups, Duke Math. J. 116, (2003), 567--588.
  • P. Baumann and S. Gaussent, On Mirković-Vilonen cycles and crystal combinatorics, Represent. Theory 12 (2008), 83--130.
  • A. Berenstein and A. Zelevinsky, Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math. 143 (2001), 77--128.
  • C. Contou-Carrère, Géométrie des groupes semi-simples, résolutions équivariantes et lieu singulier de leurs variétés de Schubert, Thése d'état, Université Montpellier II, Montpellier, Hérault, France, 1983.
  • M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. Éc. Norm. Supér. 7 (1974), 53--88.
  • S. Gaussent and P. Littelmann, LS-galleries, the path model, and MV-cycles, Duke Math. J. 127 (2005), 35--88.
  • H. C. Hansen, On cycles in flag manifolds, Math. Scand. 33 (1973), 269--274.
  • J. Kamnitzer, The crystal structure on the set of Mirković-Vilonen polytopes, Adv. Math. 215 (2007), 66--93.
  • —, Mirković-Vilonen cycles and polytopes, Ann. of Math. (2) 171 (2010), 245--294.
  • M. Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), 383--413.
  • —, ``On crystal bases'' in Representations of Groups (Banff, Alberta, 1994), CMS Conf. Proc. 16, Amer. Math. Soc., Providence, 1995, 155--197.
  • S. Kumar, Kac-Moody Groups, their Flag Varieties and Representation Theory, Progr. Math. 204, Birkhäuser, Boston, 2002.
  • P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math. 116 (1994), 329--346.
  • —, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), 499--525.
  • —, Cones, crystals, and patterns, Transform. Groups 3 (1998), 145--179.
  • —, Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras, J. Amer. Math. Soc. 11 (1998), 551--567.
  • —, ``Bases for representations, LS-paths and Verma flags,'' in A Tribute to C. S. Seshadri (Chennai, 2002), Trends Math., Birkhäuser, Basel 2003, 323--345.
  • G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447--498.
  • I. Mirković and K. Vilonen, Perverse sheaves on affine Grassmannians and Langlands duality, Math. Res. Lett. 7 (2000), 13--24.
  • —, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), 95--143.
  • S. Morier-Genoud, Relèvement géométrique de la base canonique et involution de Schützenberger, C. R. Math. Acad. Sci. Paris 337 (2003), 371--374.
  • R. Steinberg, Lectures on Chevalley Groups, Yale University, New Haven, Conn., 1968.
  • J. Tits, Uniqueness and presentation of Kac-Moody groups over fields, J. Algebra 105 (1987), 542--573.