Duke Mathematical Journal

Optimal three-ball inequalities and quantitative uniqueness for the Lamé system with Lipschitz coefficients

Ching-Lung Lin, Gen Nakamura, and Jenn-Nan Wang

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this article we study the local behavior of a solution to the Lamé system with Lipschitz coefficients in dimension n2. Our main result is the bound on the vanishing order of a nontrivial solution, which immediately implies the strong unique continuation property (SUCP). We solve the open problem of the SUCP for the Lamé system with Lipschitz coefficients in any dimension.

Article information

Source
Duke Math. J., Volume 155, Number 1 (2010), 189-204.

Dates
First available in Project Euclid: 23 September 2010

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1285247222

Digital Object Identifier
doi:10.1215/00127094-2010-054

Mathematical Reviews number (MathSciNet)
MR2730376

Zentralblatt MATH identifier
1202.35325

Subjects
Primary: 35Q72
Secondary: 35J55

Citation

Lin, Ching-Lung; Nakamura, Gen; Wang, Jenn-Nan. Optimal three-ball inequalities and quantitative uniqueness for the Lamé system with Lipschitz coefficients. Duke Math. J. 155 (2010), no. 1, 189--204. doi:10.1215/00127094-2010-054. https://projecteuclid.org/euclid.dmj/1285247222


Export citation

References

  • G. Alessandrini and A. Morassi, Strong unique continuation for the Lamé system of elasticity, Comm. Partial Differential Equations 26 (2001), 1787--1810.
  • D. D. Ang, M. Ikehata, D. D. Trong, and M. Yamamoto, Unique continuation for a stationary isotropic Lamé system with variable coefficients, Comm. Partial Differential Equations 23 (1998), 371--385.
  • B. Dehman and L. Robbiano, La propriété du prolongement unique pour un système elliptique: le système Lamé, J. Math. Pures Appl. 72 (1993), 475--492.
  • M. Eller, Carleman estimates for some elliptic systems, J. Phys. Conf. Ser. 124 (2008), 012023.
  • L. Escauriaza, Unique continuation for the system of elasticity in the plane, Proc. Amer. Math. Soc. 134 (2006), 2015--2018.
  • L. Escauriaza, F. J. FernáNdez, and S. Vessella, Doubling properties of caloric functions, Appl. Anal. 85 (2006), 205--223.
  • C. Fabre and G. Lebeau, Prolongement unique des solutions de l'équation de Stokes, Comm. Partial Differential Equations 21 (1996), 573--596.
  • N. Garofalo and F.-H. Lin, Monotonicity properties of variational integrals, $A\sb p$ weights and unique continuation, Indiana Univ. Math. J. 35 (1986), 245--268.
  • —, Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math. 40 (1987), 347--366.
  • L. HöRmander, The Analysis of Linear Partial Differential Operators, III, Grundlehren Math. Wiss. 274, Springer, Berlin, 1985.
  • C. L. Lin, S. Nagayasu, and J. N. Wang, Quantitative uniqueness for the power of Laplacian with singular coefficients, to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci., preprint.
  • C. L. Lin, G. Nakamura, and J. N. Wang, Quantitative uniqueness for second order elliptic operators with strongly singular coefficients, to appear in Rev. Mat. Iberoamericana, preprint.
  • C. L. Lin, G. Uhlmann, and J. N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Stokes system, Discrete Contin. Dyn. Syst. 28 (2010), 1273--1290.
  • C. L. Lin and J. N. Wang, Strong unique continuation for the Lamé system with Lipschitz coefficients, Math. Ann. 331 (2005), 611--629.
  • K. Miller, Nonunique continuation for uniformly parabolic and elliptic equations in selfadjoint divergence form with Hölder continuous coefficients, Bull. Amer. Math. Soc. 79 (1973), 350--354.
  • A. Plis, On non-uniqueness in Cauchy problem for an elliptic second order differential equation, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 11 (1963), 95--100.
  • R. Regbaoui, Strong uniqueness for second order differential operators, J. Differential Equations 141 (1997), 201--217.
  • —, Strong unique continuation for stokes equations, Comm. Partial Differential Equations 24 (1999), 1891--1902.
  • N. Weck, Unique continuation for systems with Lamé principal part, Math. Methods Appl. Sci. 24 (2001), 595--605.