Duke Mathematical Journal

Hall algebras and quantum Frobenius

Kevin Mcgerty

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Lusztig constructed a Frobenius morphism for quantum groups at an th root of unity, which gives an integral lift of the Frobenius map on universal enveloping algebras in positive characteristic. Using the Hall algebra, we give a simple construction of this map for the positive part of the quantum group attached to an arbitrary Cartan datum in the nondivisible case

Article information

Duke Math. J., Volume 154, Number 1 (2010), 181-206.

First available in Project Euclid: 14 July 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 17B35: Universal enveloping (super)algebras [See also 16S30]
Secondary: 16A64


Mcgerty, Kevin. Hall algebras and quantum Frobenius. Duke Math. J. 154 (2010), no. 1, 181--206. doi:10.1215/00127094-2010-036. https://projecteuclid.org/euclid.dmj/1279140508

Export citation


  • H. H. Andersen, Schubert varieties and Demazure's character formula, Invent. Math. 79 (1985), 611--618.
  • H. H. Andersen, J. C. Jantzen, and W. Soergel, Representations of quantum groups at a $p$th root of unity and of semisimple groups in characteristic $p$: Independence of $p$, Astérisque 220, Soc. Math. France, Paris, 1994.
  • S. Arkhipov, R. Bezrukavnikov, and V. Ginzburg, Quantum groups, the loop Grassmannian, and the Springer resolution, J. Amer. Math. Soc. 17 (2004), 595--678.
  • A. A. Beĭlinson, G. Lusztig, and R. Macpherson, A geometric setting for the quantum deformation of $\rm{GL_n}$, Duke Math. J. 61 (1990), 655--677.
  • B. Deng and J. Du, Frobenius morphisms and representations of algebras, Trans. Amer. Math. Soc. 358 (2006), 3591--3622.
  • V. Dlab and C. M. Ringel, On algebras of finite representation type, J. Algebra 33 (1975), 306--394.
  • M. Kashiwara, Similarity of crystal bases, Contemp. Math. 194 (1996), 177--186.
  • M. Kashiwara and T. Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with negative level, Duke Math. J. 77 (1995), 21--62.
  • D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, IV, J. Amer. Math. Soc. 7 (1994), 383--453.
  • S. Kumar and P. Littelmann, Algebraization of Frobenius splitting via quantum groups, Ann. of Math. (2) 155 (2002), 491--551.
  • P. Littelmann, Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras, J. Amer. Math. Soc. 11 (1998), 551--567.
  • G. Lusztig, ``Modular representations and quantum groups'' in Classical Groups and Related Topics (Beijing, 1987), Contemp. Math. 82, Amer. Math. Soc., Providence, 1989, 59--77.
  • —, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447--498.
  • —, Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra, J. Amer. Math. Soc. 3 (1990), 257--296.
  • —, Quantum groups at roots of $1$, Geom. Dedicata 35 (1990), 89--113.
  • —, Introduction to Quantum Groups, Progr. Math. 110, Birkhäuser, Boston, 1993.
  • —, ``Canonical bases and Hall algebras'' in Representation Theories and Algebraic Geometry (Montreal, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 514, Kluwer, Dordrecht, 1998, 365--399.
  • —, ``Aperiodicity in quantum affine $\mathfrak{gl}_n$'' in Sir Michael Atiyah, Asian J. Math. 3 (1999), 147--177.
  • —, ``Transfer maps for quantum affine $\mathfrak{sl}_n$'' in Representations and Quantizations (Shanghai, 1998), China High. Educ. Press, Beijing, 2000, 341--356.
  • —, Study of a $\mathbb Z$-form of the coordinate ring of a reductive group, J. Amer. Math. Soc. 22 (2009), 739--769.
  • K. Mcgerty, Generalized $q$-Schur algebras and quantum Frobenius, Adv. Math. 214 (2007), 116--131.
  • C. M. Ringel, Hall algebras and quantum groups, Invent. Math. 101 (1990), 583--592.
  • R. Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33--56.
  • —, Endomorphisms of Linear Algebraic Groups, Mem. Amer. Math. Soc. 80, Amer. Math. Soc., Providence, 1968.
  • T. Tanisaki, Hodge modules, equivariant $K$-theory and Hecke algebras, Publ. Res. Inst. Math. Sci. 23 (1987), 841--879.