Duke Mathematical Journal

Gröbner bases for operads

Vladimir Dotsenko and Anton Khoroshkin

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We define a new monoidal structure on the category of collections (shuffle composition). Monoids in this category (shuffle operads) turn out to bring a new insight in the theory of symmetric operads. For this category, we develop the machinery of Gröbner bases for operads and present operadic versions of Bergman's diamond lemma and Buchberger's algorithm. This machinery can be applied to study symmetric operads. In particular, we obtain an effective algorithmic version of Hoffbeck's Poincaré-Birkhoff-Witt criterion of Koszulness for (symmetric) quadratic operads

Article information

Duke Math. J., Volume 153, Number 2 (2010), 363-396.

First available in Project Euclid: 26 May 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 22E50: Representations of Lie and linear algebraic groups over local fields [See also 20G05] 46F10: Operations with distributions
Secondary: 20C99: None of the above, but in this section 20G05: Representation theory 22E45: Representations of Lie and linear algebraic groups over real fields: analytic methods {For the purely algebraic theory, see 20G05} 14L24: Geometric invariant theory [See also 13A50] 14L30: Group actions on varieties or schemes (quotients) [See also 13A50, 14L24, 14M17]


Dotsenko, Vladimir; Khoroshkin, Anton. Gröbner bases for operads. Duke Math. J. 153 (2010), no. 2, 363--396. doi:10.1215/00127094-2010-026. https://projecteuclid.org/euclid.dmj/1274902083

Export citation


  • G. Bergman, The diamond lemma for ring theory, Adv. in Math. 29 (1978), 178--218.
  • L. A. Bokut, Imbeddings into simple associative algebras, Algebra i Logic 15 (1978), 73--90.
  • B. Buchberger, An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal, Ph.D. dissertation, University of Innsbruck, 1965 (German), J. Symbolic Comput. 41 (2006), 471--511.
  • F. Chapoton, Algèbres pré-Lie et algèbres de Hopf liées à la renormalisation, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 681--684.
  • —, On a Hopf operad containing the Poisson operad, Algebr. Geom. Topol. 3 (2003), 1257--1273.
  • F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad, Int. Math. Res. Not. IMRN 2001, 395--408.
  • S. Cherkis and C. SäMann, Multiple M2-branes and generalized 3-Lie algebras, Phys. Rev. D 78 (2008), 066019.
  • V. Dotsenko, An operadic approach to deformation quantization of compatible Poisson brackets, I. J. Gen. Lie Theory Appl. 1 (2007), 107--115.
  • V. Dotsenko and M. V. Johannson, Implementing Gröbner bases for operads, to appear in Sémin. Congr., preprint.
  • V. V. Dotsenko and A. S. Khoroshkin, Character formulas for the operad of a pair of compatible brackets and for the bi-Hamiltonian operad, Funktsional. Anal. i Prilozhen. 41 (2007), 1--17.
  • W. L. Gan, Koszul duality for dioperads, Math. Res. Lett. 10 (2003), 109--124.
  • L. Gerritzen, Tree polynomials and non-associative Gröbner bases, J. Symbolic Comp. 41 (2006), 297--316.
  • V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), 203--272.
  • A. V. Gnedbaye, ``Opérades des algèbres $(k+1)$-aires'' in Operads: Proceedings of Renaissance Conferences (Hartford, Conn./Luminy, 1995), Contemp. Math. 202, Amer. Math. Soc., Providence, 1997, 83--113.
  • P. Hanlon and M. Wachs, On Lie $k$-algebras, Adv. Math. 113 (1995), 206--236.
  • L. HellströM, Rewriting in operads and PROPs, J. Nonlin. Math. Phys. 13, Suppl. (2006), 66--75.
  • E. Hoffbeck, A Poincaré-Birkhoff-Witt criterion for Koszul operads, Manuscripta Math. 131 (2010), 87--110.
  • A. Khoroshkin, Koszul operads and distributive lattices, preprint, 2006.
  • J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. (2) 39 (1993), 269--293.
  • M. Markl, Distributive laws and Koszulness, Ann. Inst. Fourier (Grenoble) 46 (1996), 307--323.
  • M. Markl and E. Remm, (Non-)Koszulity of operads for $n$-ary algebras, cohomology and deformations, preprint.
  • M. Markl, S. Shnider, and J. Stasheff, Operads in Algebra, Math. Surveys Monogr. 96, Amer. Math. Soc., Providence, 2002.
  • M. Markl and A. A. Voronov, ``PROPped up graph cohomology'' in Algebra, Arithmetic, and Geometry. Volume I: In Honor of Y. I. Manin, Progr. Math. 269, Birkhäuser, Boston, 2009.
  • S. A. Merkulov, Exotic automorphisms of the Schouten algebra of polyvector fields, preprint.
  • S. B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39--60.
  • P. Salvatore and R. Tauraso, The operad Lie is free, J. Pure Appl. Algebra 213 (2009), 224--230.
  • A. I. Shirshov, Some algorithmic problems for Lie algebras, Sibirsk. Mat. Z. 3 (1962), 292--296. (Russian); English translation in SIGSAM Bulletin 33 (1999), no. 2, 3--6.
  • C. R. Stover, The equivalence of certain categories of twisted Lie and Hopf algebras over a commutative ring, J. Pure Appl. Algebra 86 (1993), 289--326.
  • H. Strohmayer, Operads of compatible structures and weighted partitions, J. Pure Appl. Algebra 212 (2008), 2522--2534.
  • V. A. Ufnarovskij, Combinatorial and asymptotic methods in algebra, Encyclopedia Math. Sci. 57, Springer, Berlin, 1995, 1--196.
  • B. Vallette, Free monoid in monoidal abelian categories, Appl. Categ. Structures 17 (2009), 43--61.
  • P. Van Der Laan, Coloured Koszul duality and strongly homotopy operads, preprint.