Duke Mathematical Journal

The tropical vertex

Mark Gross, Rahul Pandharipande, and Bernd Siebert

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Elements of the tropical vertex group are formal families of symplectomorphisms of the 2-dimensional algebraic torus. We prove that ordered product factorizations in the tropical vertex group are equivalent to calculations of certain genus zero relative Gromov-Witten invariants of toric surfaces. The relative invariants which arise have full tangency to a toric divisor at a single unspecified point. The method uses scattering diagrams, tropical curve counts, degeneration formulas, and exact multiple cover calculations in orbifold Gromov-Witten theory

Article information

Duke Math. J., Volume 153, Number 2 (2010), 297-362.

First available in Project Euclid: 26 May 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14N35: Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants [See also 53D45]
Secondary: 53D45: Gromov-Witten invariants, quantum cohomology, Frobenius manifolds [See also 14N35]


Gross, Mark; Pandharipande, Rahul; Siebert, Bernd. The tropical vertex. Duke Math. J. 153 (2010), no. 2, 297--362. doi:10.1215/00127094-2010-025. https://projecteuclid.org/euclid.dmj/1274902082

Export citation


  • D. Abramovich, T. Graber, and A. Vistoli, Gromov-Witten theory for Deligne-Mumford stacks.
  • J. Bryan and R. Pandharipande, Curves in Calabi-Yau threefolds and topological quantum field theory, Duke Math. J. 126 (2005), 369--396.
  • —, Local Gromov-Witten theory of curves, J. Amer. Math. Soc. 21 (2008), 101--136.
  • W. Chen and Y. Ruan, ``Orbifold Gromov-Witten theory'' in Orbifolds in Mathematics and Physics (Madison, Wis., 2001), Contemp. Math. 310, Amer. Math. Soc., Providence, 2002, 25--85.
  • A. Gathmann, Relative Gromov-Witten invariants and the mirror formula, Math. Ann. 325 (2003), 393--412.
  • A. Gathmann and H. Markwig, The numbers of tropical plane curves through points in general position, J. Reine Angew. Math. 602 (2007), 155--177.
  • R. Gopakumar and C. Vafa, M-theory and topological strings---I,\arxivhep-th/9809187v1$\!\!$.
  • —, M-theory and topological strings---II,\arxivhep-th/9812127v1$\!\!$.
  • T. Graber and R. Vakil, Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J. 30 (2005), 1--37.
  • M. Gross and B. Siebert, From real affine geometry to complex geometry.
  • E.-N. Ionel and T. H. Parker, Relative Gromov-Witten invariants, Ann. of Math. (2) 157 (2003), 45--96.
  • P. Johnson, R. Pandharipande, and H.-H. Tseng, Abelian Hurwitz-Hodge integrals.
  • M. Kontsevich and Y. Soibelman, ``Affine structures and non-Archimedean analytic spaces'' in The Unity of Mathematics, Progr. Math. 244, Birkhäuser, Boston, 2006, 321--385.
  • —, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations.
  • A.-M. Li and Y. Ruan, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math. 145 (2001), 151--218.
  • J. Li, Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom. 57 (2001), 509--578.
  • —, A degeneration formula for G-W invariants, J. Differential Geom. 60 (2002), 199--293.
  • D. Maulik and R. Pandharipande, Gromov-Witten theory and Noether-Lefschetz theory.
  • G. Mikhalkin, Enumerative tropical algebraic geometry in $\RR^2$, J. Amer. Math. Soc. 18 (2005), 313--377.
  • T. Nishinou and B. Siebert, Toric degenerations of toric varieties and tropical curves, Duke Math. J. 135 (2006), 1--51.
  • R. Pandharipande, Hodge integrals and degenerate contributions, Comm. Math. Phys. 208 (1999), 489--506.
  • —, ``Three questions in Gromov-Witten theory'' in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 503--512.
  • M. Reineke, Poisson automorphisms and quiver moduli.
  • —, Cohomology of quiver moduli, functional equations, and integrality of Donaldson-Thomas type invariants.
  • N. Takahashi, Log mirror symmetry and local mirror symmetry.
  • A. Zinger, A comparison theorem for Gromov-Witten invariants in the symplectic category.