Duke Mathematical Journal

A relative trace identity between GL2n and Sp̃n

Zhengyu Mao and Stephen Rallis

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We prove a relative trace identity between GL2n and Sp̃n, using Ginzburg, Rallis, and Soudry's work on automorphic descent. This should serve as a model on using automorphic descent to establish a relative trace identity

Article information

Duke Math. J., Volume 152, Number 2 (2010), 207-255.

First available in Project Euclid: 31 March 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Primary: 11F70: Representation-theoretic methods; automorphic representations over local and global fields
Secondary: 11F72: Spectral theory; Selberg trace formula


Mao, Zhengyu; Rallis, Stephen. A relative trace identity between ${\rm GL}_{2n}$ and $\widetilde{\mathrm{Sp}}_n$. Duke Math. J. 152 (2010), no. 2, 207--255. doi:10.1215/00127094-2010-012. https://projecteuclid.org/euclid.dmj/1270041108

Export citation


  • A. Aizenbud and D. Gourevitch, Schwartz functions on Nash manifolds, Int. Math. Res. Not. IMRN 2008, no. 5, art. ID rnm155.
  • J. Arthur, ``An introduction to the trace formula'' in Harmonic Analysis, the Trace Formula, and Shimura Varieties, Clay Math. Proc. 4, Amer. Math. Soc., Providence, 2005, 1--263.
  • E. M. Baruch and Z. Mao, Central value of automorphic $L$-functions, Geom. Funct. Anal. 17 (2007), no. 2, 333--384.
  • D. Bump, S. Friedberg, and J. Hoffstein, $p$-adic Whittaker functions on the metaplectic group, Duke Math. J. 63 (1991), 379--397.
  • W. Casselman, Introduction to the Schwartz space of $\Gamma\backslash G$, Canad. J. Math. 41 (1989), 285--320.
  • J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi, On lifting from classical groups to $\GL\sb N$, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 5--30.
  • J. Dixmier and P. Malliavin, Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. (2) 102 (1978), 307--330.
  • S. Friedberg and H. Jacquet, Linear periods, J. Reine. Angew. Math. 443 (1993), 91--139.
  • D. Ginzburg, S. Rallis, and D. Soudry, Self-dual automorphic ${\rm GL}\sb n$ modules and construction of a backward lifting from ${\rm GL}\sb n$ to classical groups, Int. Math. Res. Not. IMRN 1997, no. 14, 687--701.
  • —, On a correspondence between cuspidal representations of ${\rm GL}\sb {2n}$ and $\widetilde{\rm Sp}\sb {2n}$, J. Amer. Math. Soc. 12 (1999), 849--907.
  • —, On explicit lifts of cusp forms from ${\rm GL}\sb m$ to classical groups, Ann. of Math. (2) 150 (1999), 807--866.
  • H. Jacquet, On the nonvanishing of some $L$-functions, Proc. Indian Acad. Sci. Math. Sci. 97 (1987), 117--155.
  • —, The continuous spectrum of the relative trace formula for $\GL(3)$ over a quadratic extension, Israel J. Math. 89 (1995), 1--59.
  • H. Jacquet and N. Chen, Positivity of quadratic base change $L$-functions, Bull. Soc. Math. France 129 (2001), 33--90.
  • H. Jacquet and S. Rallis, Kloosterman integrals for skew symmetric matrices, Pacific J. Math. 154 (1992), 265--283.
  • D. Jiang, Z. Mao, and S. Rallis, A relative Kuznietsov trace formula on $G\sb 2$, Manuscripta Math. 99 (1999), 411--423.
  • E. Lapid and O. Offen, Compact unitary periods, Compos. Math. 143 (2007), 323--338.
  • Z. Mao, Sur les sommes de Salié relatives, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 1257--1262.
  • Z. Mao and S. Rallis, Jacquet modules of the Weil representations and families of relative trace identities, Compos. Math. 140 (2004), 855--886.
  • —, ``Global method in relative trace identities'' in Automorphic Representations, $L$-Functions and Applications: Progress and Prospects, Ohio State Univ. Math. Res. Inst. Publ. 11, de Gruyter, Berlin, 2005, 403--417.
  • —, A Plancherel formula for $\Sp_{2n}/\Sp_n\times \Sp_n$ and its application, Compos. Math. 145 (2009), 501--527.
  • K. Martin and D. Whitehouse, Central $L$-values and toric periods for $\GL(2)$, Int. Math. Res. Not. IMRN 2009, no. 1, art. ID rnm127, 141--191.
  • O. Offen, Relative spherical functions on $p$-adic symmetric spaces (three cases), Pacific J. Math. 215 (2004), 97--149.
  • J.-L. Waldspurger, Endoscopie et analyse harmonique sur les groupe $p$-adiques, preprint.