Duke Mathematical Journal

Binomial D-modules

Alicia Dickenstein, Laura Felicia Matusevich, and Ezra Miller

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We study quotients of the Weyl algebra by left ideals whose generators consist of an arbitrary Zd-graded binomial ideal I in C[1,,n] along with Euler operators defined by the grading and a parameter βCd. We determine the parameters β for which these D-modules (i) are holonomic (equivalently, regular holonomic, when I is standard-graded), (ii) decompose as direct sums indexed by the primary components of I, and (iii) have holonomic rank greater than the rank for generic β. In each of these three cases, the parameters in question are precisely those outside of a certain explicitly described affine subspace arrangement in Cd. In the special case of Horn hypergeometric D-modules, when I is a lattice-basis ideal, we furthermore compute the generic holonomic rank combinatorially and write down a basis of solutions in terms of associated A-hypergeometric functions. This study relies fundamentally on the explicit lattice-point description of the primary components of an arbitrary binomial ideal in characteristic zero, which we derive in our companion article [DMM]

Article information

Source
Duke Math. J., Volume 151, Number 3 (2010), 385-429.

Dates
First available in Project Euclid: 8 February 2010

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1265637658

Digital Object Identifier
doi:10.1215/00127094-2010-002

Mathematical Reviews number (MathSciNet)
MR2605866

Zentralblatt MATH identifier
1205.13031

Subjects
Primary: 33C70: Other hypergeometric functions and integrals in several variables 32C38: Sheaves of differential operators and their modules, D-modules [See also 14F10, 16S32, 35A27, 58J15]
Secondary: 14M25: Toric varieties, Newton polyhedra [See also 52B20] 13N10: Rings of differential operators and their modules [See also 16S32, 32C38]

Citation

Dickenstein, Alicia; Matusevich, Laura Felicia; Miller, Ezra. Binomial $D$ -modules. Duke Math. J. 151 (2010), no. 3, 385--429. doi:10.1215/00127094-2010-002. https://projecteuclid.org/euclid.dmj/1265637658


Export citation

References

  • A. Adolphson, Hypergeometric functions and rings generated by monomials, Duke Math. J. 73 (1994), 269--290.
  • —, Higher solutions of hypergeometric systems and Dwork cohomology, Rend. Sem. Mat. Univ. Padova 101 (1999), 179--190.
  • V. V. Batyrev and D. Van Straten, Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toric varieties, Commun. Math. Phys. 168 (1995), 493--533.
  • J.-E. BjöRk, Rings of Differential Operators, North-Holland Math. Lib. 21, North-Holland, Amsterdam, 1979.
  • W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Stud. Adv. Math. 39, Cambridge Univ. Press, Cambridge, 1993.
  • E. Cattani and A. Dickenstein, Counting solutions to binomial complete intersections, J. Complexity 23 (2007), 82--107.
  • A. Dickenstein, L. F. Matusevich, and E. Miller, Combinatorics of binomial primary decomposition, to appear in Math. Z., preprint.
  • A. Dickenstein, L. F. Matusevich, and T. Sadykov, Bivariate hypergeometric $D$-modules, Adv. Math. 196 (2005), 78--123.
  • A. M. Dickenstein [DikenshteĭN] and T. Sadykov, Bases in the solution space of the Mellin system of equations (in Russian), Mat. Sb. 198, no. 9 (2007), 59--80.; English translation in Sb. Math. 198 (2007), 1277--1298.
  • D. Eisenbud and B. Sturmfels, Binomial ideals, Duke Math. J. 84 (1996), 1--45.
  • A. ErdéLyi, Hypergeometric functions of two variables, Acta Math. 83 (1950), 131--164.
  • K. G. Fischer and J. Shapiro, Mixed matrices and binomial ideals, J. Pure Appl. Algebra 113 (1996), 39--54.
  • I. M. Gel$^\prime$fand, M. I. Graev, and A. V. Zelevinskiĭ, Holonomic systems of equations and series of hypergeometric type (in Russian), Dokl. Akad. Nauk SSSR 295 (1987), 14--19.; English translation in Soviet Math. Dokl. 36 (1988), 5--10.
  • I. M. Gel$^\prime$fand, A. V. Zelevinskiĭ, and M. M. Kapranov, Hypergeometric functions and toric varieties (in Russian), Funktsional. Anal. i Prilozhen. 23, no. 2, (1989), 12--26.; English translation in Funct. Anal. Appl. 23 (1989), 94--106.
  • J. P. C. Greenlees and J. P. May, Derived functors of $I$-adic completion and local homology, J. Algebra 149 (1992), 438--453.
  • R. P. Horja, Hypergeometric functions and mirror symmetry in toric varieties, preprint.
  • S. Hosono, ``Central charges, symplectic forms, and hypergeometric series in local mirror symmetry'' in Mirror Symmetry, V, AMS/IP Stud. Adv. Math. 38, Amer. Math. Soc., Providence, 2006, 405--440.
  • S. Hosono, B. H. Lian, and S.-T. Yau, GKZ-generalized hypergeometric systems in mirror symmetry of Calabi-Yau hypersurfaces, Comm. Math. Phys. 182 (1996), 535--577.
  • S. Hoşten and J. Shapiro, ``Primary decomposition of lattice basis ideals'' in Symbolic Computation in Algebra, Analysis, and Geometry (Berkeley, Calif., 1998), J. Symbolic Comput. 29 (2000), 625--639.
  • R. Hotta, Equivariant $D$-modules, preprint.
  • L. F. Matusevich, E. Miller, and U. Walther, Homological methods for hypergeometric families, J. Amer. Math. Soc. 18 (2005), 919--941.
  • H. Mellin, Résolution de l'équation algébrique générale à l'aide de la fonction $\Gamma$, C. R. Acad. Sci. 172 (1921), 658--661.
  • E. Miller, The Alexander duality functors and local duality with monomial support, J. Algebra 231 (2000), 180--234.
  • —, ``Graded Greenlees-May duality and the Čech hull'' in Local Cohomology and Its Applications (Guanajuato, Mexico, 1999), Lect. Notes Pure Appl. Math. 226, Dekker, New York, 2002, 233--253.
  • E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Grad. Texts in Math. 227, Springer, New York, 2005.
  • G. Okuyama, A-Hypergeometric ranks for toric threefolds, Int. Math. Res. Not. (2006), Art. ID 70814.
  • T. M. Sadykov, On the Horn system of partial differential equations and series of hypergeometric type, Math. Scand. 91 (2002), 127--149.
  • M. Saito, B. Sturmfels, and N. Takayama, Gröbner Deformations of Hypergeometric Differential Equations, Springer, Algorithms Comput. Math. 6, Berlin, 2000.
  • M. Schulze and U. Walther, Irregularity of hypergeometric systems via slopes along coordinate subspaces, Duke Math. J. 142 (2008), 465--509.
  • B. Sturmfels, ``Solving algebraic equations in terms of $\mathcalA$-hypergeometric series'' in Formal Power Series and Algebraic Combinatorics (Minneapolis, 1996), Discrete Math. 210 (2000), 171--181.
  • —, Solving Systems of Polynomial Equations, CBMS Regional Conf. Ser. in Math. 97, Amer. Math. Soc., Providence, 2002.