Duke Mathematical Journal
- Duke Math. J.
- Volume 150, Number 3 (2009), 489-532.
The volume and Chern-Simons invariant of a representation
Abstract
We give an efficient simplicial formula for the volume and Chern-Simons invariant of a boundary-parabolic -representation of a tame -manifold. If the representation is the geometric representation of a hyperbolic -manifold, our formula computes the volume and Chern-Simons invariant directly from an ideal triangulation with no use of additional combinatorial topology. In particular, the Chern-Simons invariant is computed just as easily as the volume
Article information
Source
Duke Math. J., Volume 150, Number 3 (2009), 489-532.
Dates
First available in Project Euclid: 27 November 2009
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1259332507
Digital Object Identifier
doi:10.1215/00127094-2009-058
Mathematical Reviews number (MathSciNet)
MR2582103
Zentralblatt MATH identifier
1246.58019
Subjects
Primary: 58J28: Eta-invariants, Chern-Simons invariants
Secondary: 57M27: Invariants of knots and 3-manifolds
Citation
Zickert, Christian K. The volume and Chern-Simons invariant of a representation. Duke Math. J. 150 (2009), no. 3, 489--532. doi:10.1215/00127094-2009-058. https://projecteuclid.org/euclid.dmj/1259332507

