Duke Mathematical Journal

Cohomology of the Hilbert scheme of points on a surface with values in representations of tautological bundles

Luca Scala

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let $X^{[n]}$ be the Hilbert scheme of $n$ points on the smooth quasi-projective surface $X$, and let $L^{[n]}$ be the tautological bundle on $X^{[n]}$ naturally associated to the line bundle $L$ on $X$. As a corollary of Haiman's results, we express the image ${\mathbf {\Phi}}(L^{[n]})$ of the tautological bundle $L^{[n]}$ for the Bridgeland-King-Reid equivalence ${\mathbf{\Phi}}:{\mathbf D}^b(X^{[n]}) \rightarrow \mathbf{D}^{b}_{\mathfrak{S}_n}(X^n)$ in terms of a complex ${\mathcal C}^{\bullet}_L$ of $\mathfrak{S}_n$-equivariant sheaves in ${\mathbf D}^b_{\mathfrak{S}_n}(X^n)$ and we characterize the image ${\mathbf{\Phi}}(L^{[n]} \otimes \cdots \otimes L^{[n]})$ in terms of the hyperderived spectral sequence $E^{p,q}_1$ associated to the derived $k$-fold tensor power of the complex ${\mathcal C}^{\bullet}_L$. The study of the ${\mathfrak S}_n$-invariants of this spectral sequence allows us to get the derived direct images of the double tensor power and of the general $k$-fold exterior power of the tautological bundle for the Hilbert-Chow morphism, providing Danila-Brion-type formulas in these two cases. This easily yields the computation of the cohomology of $X^{[n]}$ with values in $L^{[n]} \otimes L^{[n]}$ and $\Lambda^k L^{[n]}$

Article information

Duke Math. J. Volume 150, Number 2 (2009), 211-267.

First available in Project Euclid: 16 October 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14C05: Parametrization (Chow and Hilbert schemes) 14F05: Sheaves, derived categories of sheaves and related constructions [See also 14H60, 14J60, 18F20, 32Lxx, 46M20]
Secondary: 18E30: Derived categories, triangulated categories 20C30: Representations of finite symmetric groups


Scala, Luca. Cohomology of the Hilbert scheme of points on a surface with values in representations of tautological bundles. Duke Math. J. 150 (2009), no. 2, 211--267. doi:10.1215/00127094-2009-050. https://projecteuclid.org/euclid.dmj/1255699340.

Export citation


  • N. Bourbaki, Éléments de Mathématique: Algèbre Commutative, chapitre 10, Masson, Paris, 1998.
  • J.-F. Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), 65--68.
  • T. Bridgeland, A. King, and M. Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), 535--554.
  • D. Burns, On rational singularities in dimensions $>2$, Math. Ann. 211 (1974), 237--244.
  • H. Cartan and S. Eilenberg, Homological algebra, with an appendix by D. A. Buchsbaum, reprint of the 1956 original, Princeton Landmarks Math., Princeton Univ. Press, Princeton, 1999.
  • A. Craw and M. Reid, ``How to calculate $A$-Hilb $\Bbb C\sp 3$'' in Geometry of Toric Varieties, Sémin. Congr. 6, Soc. Math. France, Montrouge, 2002, 129--154.
  • G. Danila, Sections du fibré déterminant sur l'espace de modules des faisceaux semi-stables de rang $2$ sur le plan projectif, Ann. Inst. Fourier (Grenoble) 50 (2000), 1323--1374.
  • —, Sur la cohomologie d'un fibré tautologique sur le schéma de Hilbert d'une surface, J. Algebraic Geom. 10 (2001), 247--280.
  • —, Résultats sur la conjecture de dualité étrange sur le plan projectif, Bull. Soc. Math. France 130 (2002), 1--33.
  • —, Sur la cohomologie de la puissance symétrique du fibré tautologique sur le schéma de Hilbert ponctuel d'une surface, J. Algebraic Geom. 13 (2004), 81--113.
  • —, Formule de verlinde et dualité étrange sur le plan projectif, Ph.D. thesis, Université Paris 7, Paris, 1999.
  • M. A. A. De Cataldo and L. Migliorini, The Chow motive of semismall resolutions, Math. Res. Lett. 11 (2004), 151--170.
  • J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), 53--94.
  • D. Eisenbud, Commutative Algebra: With a View toward Algebraic Geometry, Grad. Texts in Math. 150, Springer, New York, 1995.
  • G. Ellingsrud, L. GöTtsche, and Manfred Lehn, On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001), 81--100.
  • W. Fulton and J. Harris, Representation Theory: A First Course, Grad. Texts in Math. 129, Springer, New York, 1991.
  • A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique, III: Étude cohomologique des faisceaux cohérents, II, Inst. Hautes Études Sci. Publ. Math. 17 (1963).
  • M. Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), 941--1006.
  • —, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. 149 (2002), 371--407.
  • R. Hartshorne, Local Cohomology, a seminar given by A. Grothendieck, Harvard University, 1961, Lecture Notes in Math. 41, Springer, Berlin, 1967.
  • M. He, Espaces de modules de systèmes cohérents, Internat. J. Math. 9 (1998), 545--598.
  • Y. Ito and I. Nakamura, McKay correspondence and Hilbert schemes, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 135--138.
  • —, ``Hilbert schemes and simple singularities'' in New Trends in Algebraic Geometry (Warwick, England, 1996), London Math. Soc. Lecture Note Ser. 264, Cambridge Univ. Press, Cambridge, 1999, 151--233.
  • J. KolláR and S. Mori, Birational geometry of algebraic varieties, with the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original, Cambridge Tracts in Math. 134, Cambridge Univ. Press, Cambridge, 1998.
  • J. Le Potier, ``Systèmes cohérents et polynômes de Donaldson'' in Moduli of Vector Bundles (Sanda, Japan, 1994; Kyoto, Japan, 1994), Lecture Notes in Pure and Appl. Math. 179, Dekker, New York, 1996, 103--128.
  • M. Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999), 157--207.
  • S. Mukai, Duality between $D(X)$ and $D(\hat X)$ with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153--175.
  • I. Nakamura, Hilbert schemes of abelian group orbits, J. Algebraic Geom. 10 (2001), 757--779.
  • M. Reid, La correspondance de McKay, Astérisque 276 (2002), 53--72., Séminaire Bourbaki 1999/2000.
  • L. Scala, Dualité étrange de Le Potier et cohomologie du schéma de Hilbert ponctuel d'une surface, Gaz. Math. 2007, no. 112, 53--65.
  • —, Cohomology of the Hilbert scheme of points on a surface with values in representations of tautological bundles: Perturbations of the metric in Seiberg-Witten equations, Ph.D. dissertation, Université Paris 7, 2005.
  • J.-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier (Grenoble) 6 ( 1955--1956.), 1--42.