Duke Mathematical Journal

Computing genus-zero twisted Gromov-Witten invariants

Tom Coates, Alessio Corti, Hiroshi Iritani, and Hsian-Hua Tseng

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Twisted Gromov-Witten invariants are intersection numbers in moduli spaces of stable maps to a manifold or orbifold X which depend in addition on a vector bundle over X and an invertible multiplicative characteristic class. Special cases are closely related to local Gromov-Witten invariants of the bundle and to genus-zero one-point invariants of complete intersections in X. We develop tools for computing genus-zero twisted Gromov-Witten invariants of orbifolds and apply them to several examples. We prove a “quantum Lefschetz theorem” that expresses genus-zero one-point Gromov-Witten invariants of a complete intersection in terms of those of the ambient orbifold X. We determine the genus-zero Gromov-Witten potential of the type A surface singularity [C2/Zn]. We also compute some genus-zero invariants of [C3/Z3], verifying predictions of Aganagic, Bouchard, and Klemm [3]. In a self-contained appendix, we determine the relationship between the quantum cohomology of the An surface singularity and that of its crepant resolution, thereby proving the Crepant Resolution Conjectures of Ruan and of Bryan and Graber [12] in this case

Article information

Duke Math. J., Volume 147, Number 3 (2009), 377-438.

First available in Project Euclid: 1 April 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14N35: Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants [See also 53D45]
Secondary: 14A20: Generalizations (algebraic spaces, stacks) 53D45: Gromov-Witten invariants, quantum cohomology, Frobenius manifolds [See also 14N35]


Coates, Tom; Corti, Alessio; Iritani, Hiroshi; Tseng, Hsian-Hua. Computing genus-zero twisted Gromov-Witten invariants. Duke Math. J. 147 (2009), no. 3, 377--438. doi:10.1215/00127094-2009-015. https://projecteuclid.org/euclid.dmj/1238592863

Export citation


  • D. Abramovich, T. Graber, and A. Vistoli, ``Algebraic orbifold quantum products'' in Orbifolds in Mathematics and Physics (Madison, Wis., 2001), Contemp. Math. 310, Amer. Math. Soc., Providence, 2002, 1--24.
  • —, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), 1337--1398.
  • M. Aganagic, V. Bouchard, and A. Klemm, Topological strings and (almost) modular forms, Comm. Math. Phys. 277 (2008), 771--819.
  • M. Audin, Torus Actions on Symplectic Manifolds, 2nd rev. ed., Progr. Math. 93, Birkhäuser, Basel, 2004.
  • S. Barannikov, Quantum periods, I: Semi-infinite variations of Hodge structures, Internat. Math. Res. Notices 2001, no. 23, 1243--1264.
  • A. Bayer and C. Cadman, Quantum cohomology of $[C^N/\mu_r]$, preprint,\arxiv0705.2160v1[math.AG]
  • A. Bertram, Another way to enumerate rational curves with torus actions, Invent. Math. 142 (2000), 487--512.
  • L. A. Borisov, L. Chen, and G. G. Smith, The orbifold Chow ring of toric Deligne-Mumford stacks, J. Amer. Math. Soc. 18 (2005), 193--215.
  • T. Bridgeland, Stability conditions and Kleinian singularities, preprint,\arxivmath/0508257v2[math.AG]
  • J. Bryan, personal communication, 2007.
  • J. Bryan and A. Gholampour, Root systems and the quantum cohomology of ADE resolutions, Algebra Number Theory 2 (2008), 369--390.
  • J. Bryan and T. Graber, The crepant resolution conjecture, preprint,\arxivmath/0610129v2[math.AG]
  • J. Bryan, T. Graber, and R. Pandharipande, The orbifold quantum cohomology of $\Bbb C\sp 2/\Bbb Z\sb 3$ and Hurwitz-Hodge integrals, J. Algebraic Geom. 17 (2008), 1--28.
  • J. Bryan and Y. Jiang, in preparation.
  • P. Candelas, X. C. De La Ossa, P. S. Green, and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), 21--74.
  • W. Chen and Y. Ruan, ``Orbifold Gromov-Witten theory'' in Orbifolds in Mathematics and Physics (Madison, Wis., 2001), Contemp. Math. 310, Amer. Math. Soc., Providence, 2002, 25--85.
  • —, A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), 1--31.
  • T.-M. Chiang, A. Klemm, S.-T. Yau, and E. Zaslow, Local mirror symmetry: Calculations and interpretations, Adv. Theor. Math. Phys. 3 (1999), 495--565.
  • T. Coates, Givental's Lagrangian cone and $S^1$-equivariant Gromov-Witten theory, Math. Res. Lett. 15 (2008), 15--31.
  • T. Coates, A. Corti, H. Iritani, and H.-H. Tseng, The crepant resolution conjecture for type A surface singularities, preprint,\arxiv0704.2034v3[math.AG]
  • —, in preparation.
  • T. Coates, A. Corti, Y.-P. Lee, and H.-H. Tseng, The quantum orbifold cohomology of weighted projective spaces, preprint,\arxivmath/0608481v6[math.AG]
  • T. Coates and A. Givental, Quantum Riemann-Roch, Lefschetz and Serre, Ann. of Math. (2) 165 (2007), 15--53.
  • T. Coates, H. Iritani, and H.-H. Tseng, Wall-Crossings in Toric Gromov-Witten Theory, I: Crepant Examples, preprint,\arxivmath/0611550v4[math.AG]
  • D. A. Cox and S. Katz, Mirror symmetry and algebraic geometry, Math. Surveys Monogr. 68, Amer. Math. Soc., Providence, 1999.
  • R. Dijkgraaf and E. Witten, Mean field theory, topological field theory and multi-matrix models, Nuclear Phys. B 342 (1990), 486--522.
  • C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math. 139 (2000), 173--199.
  • J. Fernandez, Hodge structures for orbifold cohomology, Proc. Amer. Math. Soc. 134 (2006), 2511--2520.
  • E. Getzler, ``The jet-space of a Frobenius manifold and higher-genus Gromov-Witten invariants'' in Frobenius Manifolds, Aspects Math. E36, Vieweg, Wiesbaden, Germany, 2004, 45--89.
  • A. B. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices 1996, no. 13, 613--663.
  • —, ``A mirror theorem for toric complete intersections'' in Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996), Progr. Math. 160, Birkhäuser, Boston, 1998, 141--175.
  • —, Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001), 551--568.
  • —, ``Symplectic geometry of Frobenius structures'' in Frobenius Manifolds, Aspects Math. E36, Vieweg, Wiesbaden, Germany, 2004, 91--112.
  • T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999), 487--518.
  • K. Hori and C. Vafa, Mirror symmetry, preprint,\arxivhep-th/0002222v3
  • S. Hosono, ``Central charges, symplectic forms, and hypergeometric series in local mirror symmetry'' in Mirror Symmetry, V, AMS/IP Stud. Adv. Math. 38, Amer. Math. Soc., Providence, 2006, 405--439.
  • H. Iritani, Convergence of quantum cohomology by quantum Lefschetz, preprint,\arxivmath/0506236v3[math.DG]
  • A. Ishii, K. Ueda, and H. Uehara, Stability conditions on $A_n$ singularities, preprint,\arxivmath/0609551v1[math.AG]
  • A. Ishii and H. Uehara, Autoequivalences of derived categories on the minimal resolutions of $A_n$-singularities on surfaces, J. Differential Geom. 71 (2005), 385--435.
  • T. J. Jarvis and T. Kimura, ``Orbifold quantum cohomology of the classifying space of a finite group'' in Orbifolds in Mathematics and Physics (Madison, Wis., 2001), Contemp. Math. 310, Amer. Math. Soc., Providence, 2002, 123--134.
  • B. Kim, Quantum hyperplane section theorem for homogeneous spaces, Acta Math. 183 (1999), 71--99.
  • B. Kim, A. Kresch, and T. Pantev, Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra 179 (2003), 127--136.
  • Y.-P. Lee, Quantum Lefschetz hyperplane theorem, Invent. Math. 145 (2001), 121--149.
  • B. H. Lian, personal communication, 2007.
  • B. H. Lian, K. Liu, and S.-T. Yau, Mirror principle, I, Asian J. Math. 1 (1997), 729--763.
  • —, ``Mirror principle, II'' in Sir Michael Atiyah: a Great Mathematician of the Twentieth Century, Asian J. Math. 3, Int. Press, Somerville, Mass., 1999, 109--146.
  • —, ``Mirror principle, III'' in Surveys in Differential Geometry, Surv. Differ. Geom. VII, Int. Press, Somerville, Mass., 2000, 433--474.
  • K. Mayr, Über die Lösung algebraischer Gleichungssysteme durch hypergeometrische Funktionen, Monatsh. Math. Phys. 45 (1936), 280--313.
  • D. Maulik, personal communication, 2007.
  • —, Gromov-Witten theory of $A_n$-resolutions, preprint,\arxiv08022681v1[math.AG]
  • M. Mcquillan, ``Formal formal schemes'' in Topology and Geometry: Commemorating SISTAG, Contemp. Math. 314, Amer. Math. Soc., Providence, 2002, 187--198.
  • D. Mumford, ``Towards an enumerative geometry of the moduli space of curves'' in Arithmetic and Geometry, Vol. II, Progr. Math. 36, Birkhäuser, Boston, 1983, 271--328.
  • R. Pandharipande, Rational curves on hypersurfaces (after A. Givental), Astérisque 252 (1998), 307--340., Séminaire Bourbaki 1997/98, no. 848.
  • F. Perroni, Chen-Ruan cohomology of $ADE$ singularities, Internat. J. Math. 18 (2007), 1009--1059.
  • —, personal communication, 2007.
  • H. Skarke, Non-perturbative gauge groups and local mirror symmetry, J. High Energy Phys. 2001, no. 11, paper 13.
  • J. Stienstra, ``GKZ Hypergeometric Structures'' in Arithmetic and Geometry around Hypergeometric Functions, Progr. Math. 260, Birkhäuser, Basel, 2007, 313--371.
  • B. Toen, Théorèmes de Riemann-Roch pour les champs de Deligne-Mumford, $K$-Theory 18 (1999), 33--76.
  • H.-H. Tseng, Orbifold Quantum Riemann-Roch, Lefschetz and Serre, preprint, \arxivmath/0506111v3 [math.AG] \endthebibliography