1 December 2008 A general convergence result for the Ricci flow in higher dimensions
Simon Brendle
Author Affiliations +
Duke Math. J. 145(3): 585-601 (1 December 2008). DOI: 10.1215/00127094-2008-059

Abstract

Let (M,g0) be a compact Riemannian manifold of dimension n4. We show that the normalized Ricci flow deforms g0 to a constant curvature metric, provided that (M,g0)×R has positive isotropic curvature. This condition is stronger than two-positive flag curvature but weaker than two-positive curvature operator

Citation

Download Citation

Simon Brendle. "A general convergence result for the Ricci flow in higher dimensions." Duke Math. J. 145 (3) 585 - 601, 1 December 2008. https://doi.org/10.1215/00127094-2008-059

Information

Published: 1 December 2008
First available in Project Euclid: 15 December 2008

zbMATH: 1161.53052
MathSciNet: MR2462114
Digital Object Identifier: 10.1215/00127094-2008-059

Subjects:
Primary: 53C44

Rights: Copyright © 2008 Duke University Press

Vol.145 • No. 3 • 1 December 2008
Back to Top