Duke Mathematical Journal
- Duke Math. J.
- Volume 145, Number 2 (2008), 379-408.
Potential density of rational points on the variety of lines of a cubic fourfold
Ekaterina Amerik and Claire Voisin
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Abstract
We prove the potential density of rational points on the variety of lines of a sufficiently general cubic fourfold defined over a number field, where “sufficiently general” means that a condition of Terasoma type is satisfied. These varieties have trivial canonical bundle and have geometric Picard number equal to one
Article information
Source
Duke Math. J., Volume 145, Number 2 (2008), 379-408.
Dates
First available in Project Euclid: 20 October 2008
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1224508841
Digital Object Identifier
doi:10.1215/00127094-2008-055
Mathematical Reviews number (MathSciNet)
MR2449951
Zentralblatt MATH identifier
1157.14012
Subjects
Primary: 14G05: Rational points
Citation
Amerik, Ekaterina; Voisin, Claire. Potential density of rational points on the variety of lines of a cubic fourfold. Duke Math. J. 145 (2008), no. 2, 379--408. doi:10.1215/00127094-2008-055. https://projecteuclid.org/euclid.dmj/1224508841
References
- E. Amerik, A computation of invariants of a rational self-map, to appear in Ann. Fac. Sci. Toulouse Math. (6), preprint,\arxiv0707.3947v1[math.AG]
- E. Amerik and F. Campana, Fibrations méromorphes sur certaines variétés à fibré canonique trivial, Pure Appl. Math. Q. 4 (2008), 509–545. Mathematical Reviews (MathSciNet): MR2400885
- A. Beauville and R. Donagi, La variété des droites d'une hypersurface cubique de dimension $4$, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 703–706. Mathematical Reviews (MathSciNet): MR0818549
- S. Bloch, Lectures on Algebraic Cycles, Duke Univ. Math. Ser. 4, Dept. of Math., Duke Univ., Durham, N.C., 1980.
- S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983), 1235–1253. Mathematical Reviews (MathSciNet): MR0714776
Digital Object Identifier: doi:10.2307/2374341
Zentralblatt MATH: 0525.14003
JSTOR: links.jstor.org - F. A. Bogomolov and Y. Tschinkel, Density of rational points on elliptic $K3$ surfaces, Asian J. Math. 4 (2000), 351–368.
- F. Campana, Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble) 54 (2004), 499–630. Mathematical Reviews (MathSciNet): MR2097416
- F. Campana and T. Peternell, Complex threefolds with non-trivial holomorphic $2$-forms, J. Algebraic Geom. 9 (2000), 223–264.
- C. H. Clemens and P. A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281–356. Mathematical Reviews (MathSciNet): MR0302652
Digital Object Identifier: doi:10.2307/1970801
JSTOR: links.jstor.org - A. Conte and J. P. Murre, The Hodge conjecture for fourfolds admitting a covering by rational curves, Math. Ann. 238 (1978), 79–88. Mathematical Reviews (MathSciNet): MR0510310
Digital Object Identifier: doi:10.1007/BF01351457
Zentralblatt MATH: 0373.14006 - R. Elkik, Rationalité des singularités canoniques, Invent. Math. 64 (1981), 1–6.
- M. Green, P. A. Griffiths, and K. H. Paranjape, Cycles over fields of transcendence degree $1$, Michigan Math. J. 52 (2004), 181–187. Mathematical Reviews (MathSciNet): MR2043404
Digital Object Identifier: doi:10.1307/mmj/1080837742
Project Euclid: euclid.mmj/1080837742 - J. Harris and Y. Tschinkel, Rational points on quartics, Duke Math. J. 104 (2000), 477–500. Mathematical Reviews (MathSciNet): MR1781480
Digital Object Identifier: doi:10.1215/S0012-7094-00-10436-X
Project Euclid: euclid.dmj/1092403792
Zentralblatt MATH: 0982.14013 - B. Hassett and Y. Tschinkel, Potential density of rational points for $K3$ surfaces over function fields, to appear in Amer. J. Math., preprint, \arxivmath/0604222v1[math.AG]Mathematical Reviews (MathSciNet): MR2450208
Digital Object Identifier: doi:10.1353/ajm.0.0023
Zentralblatt MATH: 1152.14036 - U. Jannsen, Mixed Motives and Algebraic $K$-Theory, appendices by S. Bloch and C. Schoen, Lecture Notes in Math. 1400, Springer, Berlin, 1990. Mathematical Reviews (MathSciNet): MR1043451
- J. P. Jouanolou, Hypersurfaces solutions d'une équation de Pfaff analytique, Math. Ann. 232 (1978), 239–245.
- Y. Kawamata, Minimal models and the Kodaira dimension of algebraic fiber spaces, J. Reine Angew. Math. 363 (1985), 1–46.
- —, On the plurigenera of minimal algebraic $3$-folds with $K \stackrel\textstyle\sim\equiv 0$, Math. Ann. 275 (1986), 539–546.
- N. Nakayama and D.-Q. Zhang, Building blocks of étale endomorphisms of complex projective manifolds, preprint, 2007, Research Inst. for Math. Sci., Kyoto Univ., Kyoto, Japan, no. 1577, http://www.kurims.kyoto-u.ac.jp/preprint/preprint_y2007.html
- W. Raskind, Higher $l$-adic Abel-Jacobi mappings and filtrations on Chow groups, Duke Math. J. 78 (1995), 33–57. Mathematical Reviews (MathSciNet): MR1328751
Digital Object Identifier: doi:10.1215/S0012-7094-95-07803-X
Project Euclid: euclid.dmj/1077285548
Zentralblatt MATH: 0915.14003 - M. Reid, “Canonical $3$-folds” in Journées de Géométrie Algébrique d'Angers (Angers, France, 1979), Sijthoff and Noordhoff, Alphen aan den Rijn, Netherlands, 273–310. Mathematical Reviews (MathSciNet): MR0605348
- J. H. Silverman, Rational points on $K3$ surfaces: A new canonical height, Invent. Math. 105 (1991), 347–373. Mathematical Reviews (MathSciNet): MR1115546
Digital Object Identifier: doi:10.1007/BF01232270
Zentralblatt MATH: 0754.14023 - T. Terasoma, Complete intersections with middle Picard number $1$ defined over $\mathbfQ$, Math. Z. 189 (1985), 289–296. Mathematical Reviews (MathSciNet): MR0779223
Digital Object Identifier: doi:10.1007/BF01175050
Zentralblatt MATH: 0579.14006 - R. Van Luijk, $K3$ surfaces with Picard number one and infinitely many rational points, Algebra Number Theory 1 (2007), 1–15.
- C. Voisin, Hodge Theory and Complex Algebraic Geometry, II, Cambridge Stud. Adv. Math. 77, Cambridge Univ. Press, Cambridge, 2003. Mathematical Reviews (MathSciNet): MR1997577
- —, “On some problems of Kobayashi and Lang; Algebraic approaches” in Current Developments in Mathematics, 2003, Int. Press, Somerville, Mass., 2003, 53–125.
- —, “Intrinsic pseudo-volume forms and $K$-correspondences” in The Fano Conference (Torino, Italy, 2003), Univ. Torino, Turin, 2004, 761–792.
- S. Zucker, The Hodge conjecture for cubic fourfolds, Compositio Math. 34 (1977), 199–209.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Ample canonical heights for endomorphisms on projective varieties
SHIBATA, Takahiro, Journal of the Mathematical Society of Japan, 2019 - Hodge theory and derived categories of cubic fourfolds
Addington, Nicolas and Thomas, Richard, Duke Mathematical Journal, 2014 - An interesting 0-cycle
Green, Mark and Griffiths, Phillip, Duke Mathematical Journal, 2003
- Ample canonical heights for endomorphisms on projective varieties
SHIBATA, Takahiro, Journal of the Mathematical Society of Japan, 2019 - Hodge theory and derived categories of cubic fourfolds
Addington, Nicolas and Thomas, Richard, Duke Mathematical Journal, 2014 - An interesting 0-cycle
Green, Mark and Griffiths, Phillip, Duke Mathematical Journal, 2003 - Rationally connected varieties over finite fields
Kollár, János and Szabó, Endre, Duke Mathematical Journal, 2003 - Finiteness of the Moderate Rational Points of Once-punctured Elliptic Curves
HOSHI, Yuichiro, Hokkaido Mathematical Journal, 2016 - Invariants of ample line bundles on projective varieties and their applications, I
Fukuma, Yoshiaki, Kodai Mathematical Journal, 2008 - Cubic fourfolds and spaces of rational curves
de Jong, A. J. and Starr, Jason, Illinois Journal of Mathematics, 2004 - K3 surfaces with Picard number one and infinitely many rational points
van Luijk, Ronald, Algebra & Number Theory, 2007 - New examples of cylindrical Fano fourfolds
Prokhorov, Yuri and Zaidenberg, Mikhail, , 2017 - A remark on the Chow ring of some hyperkähler fourfolds
Laterveer, Robert, Bulletin of the Belgian Mathematical Society - Simon Stevin, 2017