Duke Mathematical Journal

A characterization of subspaces and quotients of reflexive banach spaces with unconditional bases

W. B. Johnson and Bentuo Zheng

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We prove that the dual or any quotient of a separable reflexive Banach space with the unconditional tree property (UTP) has the UTP. This is used to prove that a separable reflexive Banach space with the UTP embeds into a reflexive Banach space with an unconditional basis. This solves several longstanding open problems. In particular, it yields that a quotient of a reflexive Banach space with an unconditional finite-dimensional decomposition (UFDD) embeds into a reflexive Banach space with an unconditional basis

Article information

Duke Math. J., Volume 141, Number 3 (2008), 505-518.

First available in Project Euclid: 15 February 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46B03: Isomorphic theory (including renorming) of Banach spaces
Secondary: 46B20: Geometry and structure of normed linear spaces


Johnson, W. B.; Zheng, Bentuo. A characterization of subspaces and quotients of reflexive banach spaces with unconditional bases. Duke Math. J. 141 (2008), no. 3, 505--518. doi:10.1215/00127094-2007-003. https://projecteuclid.org/euclid.dmj/1203087635

Export citation


  • W. J. Davis, T. Figiel, W. B. Johnson, and A. PełCzyńSki, Factoring weakly compact operators, J. Functional Analysis 17 (1974), 311--327.
  • M. Fabian, P. Habala, P. HáJek, V. Montesinos SantalucíA, J. Pelant, and V. Zizler, Functional Analysis and Infinite-Dimensional Geometry, CMS Books Math./Ouvrages Math. SMC 8, Springer, New York, 2001.
  • M. Feder, On subspaces of spaces with an unconditional basis and spaces of operators, Illinois J. Math. 24 (1980), 196--205.
  • T. Figiel, W. B. Johnson, and L. Tzafriri, On Banach lattices and spaces having local unconditional structure, with applications to Lorentz function spaces, J. Approximation Theory 13 (1975), 395--412.
  • R. Haydon, E. Odell, and T. Schlumprecht, Small subspaces of $L_p$, preprint, \arxiv0711.3919v1 [math.FA]
  • W. B. Johnson, On quotients of $L_p$ which are quotients of $\ell_p$, Compositio Math. 34 (1977), 69--89.
  • W. B. Johnson and H. P. Rosenthal, On $\omega^*$-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77--92.
  • W. B. Johnson and A. Szankowski, Complementably universal Banach spaces, Studia Math. 58 (1976), 91--97.
  • W. B. Johnson and M. Zippin, ``On subspaces of quotients of $\big(\sumG_n\big)_l_p$ and $\big(\sumG_n\big)_c_0$'' in Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normal Linear Spaces (Jerusalem, 1972), Israel J. Math. 13 (1972), 311--316.
  • —, Subspaces and quotient spaces of $\big(\sumG_n\big)_l_p$ and $\big(\sumG_n\big)_c_0$, Israel J. Math. 17 (1974), 50--55.
  • J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I: Sequence Spaces, Ergeb. Math. Grenzgeb. 92, Springer, Berlin, 1977.
  • E. Odell and T. Schlumprecht, Trees and branches in Banach spaces, Trans. Amer. Math. Soc. 354, no. 10 (2002), 4085--4108.
  • —, A universal reflexive space for the class of uniformly convex Banach spaces, Math. Ann. 335 (2006), 901--916.
  • E. Odell, T. Schlumprecht, and A. ZsáK, On the structure of asymptotic $\ell_p$ spaces, to appear in Q. J. Math.
  • A. PełCzyńSki and P. Wojtaszczyk, Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces, Studia Math. 40 (1971), 91--108.
  • T. Schlumprecht, private communication, 2006.
  • M. Zippin, Banach spaces with separable duals, Trans. Amer. Math. Soc. 310, no. 1 (1988), 371--379.