Duke Mathematical Journal

Coisotropic intersections

Viktor L. Ginzburg

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this article, we make the first steps toward developing a theory of intersections of coisotropic submanifolds, similar to that for Lagrangian submanifolds.

For coisotropic submanifolds satisfying a certain stability requirement, we establish persistence of coisotropic intersections under Hamiltonian diffeomorphisms, akin to the Lagrangian intersection property. To be more specific, we prove that the displacement energy of a stable coisotropic submanifold is positive, provided that the ambient symplectic manifold meets some natural conditions. We also show that a displaceable, stable, coisotropic submanifold has nonzero Liouville class. This result further underlines the analogy between displacement properties of Lagrangian and coisotropic submanifolds

Article information

Duke Math. J., Volume 140, Number 1 (2007), 111-163.

First available in Project Euclid: 25 September 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53D40: Floer homology and cohomology, symplectic aspects
Secondary: 53D12: Lagrangian submanifolds; Maslov index 37J45: Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods


Ginzburg, Viktor L. Coisotropic intersections. Duke Math. J. 140 (2007), no. 1, 111--163. doi:10.1215/S0012-7094-07-14014-6. https://projecteuclid.org/euclid.dmj/1190730776

Export citation


  • M. Audin and J. Lafontaine, eds., Holomorphic Curves in Symplectic Geometry, Prog. Math. 117, Birkhäuser, Basel, 1994.
  • A. Banyaga, On fixed points of symplectic maps, Invent. Math. 56 (1980), 215--229.
  • P. Biran and K. Cieliebak, Lagrangian embeddings into subcritical Stein manifolds, Israel J. Math. 127 (2002), 221--244.
  • P. Biran, L. Polterovich, and D. Salamon, Propagation in Hamiltonian dynamics and relative symplectic homology, Duke Math. J. 119 (2003), 65--118.
  • P. Bolle, Une condition de contact pour les sous-variétés coïsotropes d'une variété symplectique, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 83--86.
  • —, A contact condition for p-dimensional submanifolds of a symplectic manifold ($2\leq p\leq n$), Math. Z. 227 (1998), 211--230.
  • Yu. V. Chekanov, ``Hofer's symplectic energy and Lagrangian intersections'' in Contact and Symplectic Geometry (Cambridge, U.K., 1994), Publ. Newton Inst. 8, Cambridge Univ. Press, Cambridge, 1996, 296--306.
  • —, Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J. 95 (1998), 213--226.
  • K. Cieliebak, Symplectic boundaries: Creating and destroying closed characteristics, Geom. Funct. Anal. 7 (1997), 269--321.
  • K. Cieliebak, V. L. Ginzburg, and E. Kerman, Symplectic homology and periodic orbits near symplectic submanifolds, Comment. Math. Helv. 79 (2004), 554--581.
  • C. C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol'd, Invent. Math. 73 (1983), 33--49.
  • D. Dragnev, Symplectic rigidity, symplectic fixed points and global perturbations of Hamiltonian systems, preprint,\arxivmath/0512109v1[math.SG]
  • I. Ekeland and H. Hofer, Two symplectic fixed-point theorems with applications to Hamiltonian dynamics, J. Math. Pures Appl. (9) 68 (1989), 467--489.
  • Y. Eliashberg, S. S. Kim, and L. Polterovich, Geometry of contact transformations and domains: Orderability versus squeezing, Geom. Topol. 10 (2006), 1635--1747.
  • M. Entov, K-area, Hofer metric and geometry of conjugacy classes in Lie groups, Invent. Math. 146 (2001), 93--141.
  • A. Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), 513--547.
  • —, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988), 775--813.
  • —, Cuplength estimates on Lagrangian intersections, Comm. Pure Appl. Math. 42 (1989), 335--356.
  • —, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989), 575--611.
  • —, Witten's complex and infinite-dimensional Morse theory, J. Differential Geom. 30 (1989), 207--221.
  • A. Floer and H. Hofer, Symplectic homology, I: Open sets in $\mathbb C^n$, Math. Z. 215 (1994), 37--88.
  • A. Floer, H. Hofer, and D. Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995), 251--292.
  • A. Floer, H. Hofer, and K. Wysocki, Applications of symplectic homology, I, Math. Z. 217 (1994), 577--606.
  • U. Frauenfelder, V. Ginzburg, and F. Schlenk, ``Energy capacity inequalities via an action selector'' in Geometry, Spectral Theory, Groups, and Dynamics, Contemp. Math. 387, Amer. Math. Soc., Providence, 2005, 129--152.
  • U. Frauenfelder and F. Schlenk, Hamiltonian dynamics on convex symplectic manifolds, Israel J. Math. 159 (2007), 1--56.
  • K. Fukaya and K. Ono, Arnold conjecture and Gromov-Witten invariant, Topology 38 (1999), 933--1048.
  • V. L. Ginzburg, An embedding $S^2n-1\to \mathbb R^2n$, $2n-1\geq 7$, whose Hamiltonian flow has no periodic trajectories, Internat. Math. Res. Notices 1995, no. 2, 83--97.
  • —, ``Hamiltonian dynamical systems without periodic orbits'' in Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc., Providence, 1999, 35--48.
  • —, ``The Weinstein conjecture and theorems of nearby and almost existence'' in The Breadth of Symplectic and Poisson Geometry, Progr. Math. 232, Birkhäuser, Boston, 2005, 139--172.
  • V. L. Ginzburg and B. Z. GüRel, A $C^2$-smooth counterexample to the Hamiltonian Seifert conjecture in $\mathbbR^4$, Ann. of Math. (2) 158 (2003), 953--976.
  • —, Relative Hofer-Zehnder capacity and periodic orbits in twisted cotangent bundles, Duke Math. J. 123 (2004), 1--47.
  • M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307--347.
  • B. Z. GüRel, Totally non-coisotropic displacement and its applications to Hamiltonian dynamics, to appear in Commun. Contemp. Math., preprint,\arxivmath/0702091v1[math.SG]
  • H. Hofer, On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 25--38.
  • H. Hofer and C. Viterbo, The Weinstein conjecture in the presence of holomorphic spheres, Comm. Pure Appl. Math. 45 (1992), 583--622.
  • H. Hofer and E. Zehnder, Periodic solutions on hypersurfaces and a result by C. Viterbo, Invent. Math. 90 (1987), 1--9.
  • —, ``A new capacity for symplectic manifolds'' in Analysis, et cetera, Academic Press, Boston, 1990, 405--427.
  • —, Symplectic Invariants and Hamiltonian Dynamics, Birkhauser Adv. Texts Basler Lehrbucher, Birkäuser, Basel, 1994.
  • E. Kerman, New smooth counterexamples to the Hamiltonian Seifert conjecture, J. Symplectic Geometry 1 (2002), 253--267.
  • —, Squeezing in Floer theory and refined Hofer-Zehnder capacities of sets near symplectic submanifolds, Geom. Topol. 9 (2005), 1775--1834.
  • E. Kerman and F. Lalonde, Length minimizing Hamiltonian paths for symplectically aspherical manifolds, Ann. Inst. Fourier (Grenoble) 53 (2003), 1503--1526.
  • F. Lalonde and D. Mcduff, Hofer's $L^\infty$-geometry: Energy and stability of Hamiltonian flows, II, Invent. Math. 122 (1995), 35--69.
  • —, The geometry of symplectic energy, Ann. of Math. (2) 141 (1995), 349--371.
  • F. Laudenbach and J.-C. Sikorav, Persistance d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibré cotangent, Invent. Math. 82 (1985), 349--357.
  • —, Hamiltonian disjunction and limits of Lagrangian submanifolds, Internat. Math. Res. Notices 1994, no. 4, 161--168.
  • T. Linnemann, Generalized fixed points on strictly convex hypersurfaces, Ph.D. dissertation, Eidgenössische Technische Hochschule Zürich, Zürich, 1998.
  • G. Liu and G. Tian, Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998), 1--74.
  • —, Weinstein conjecture and GW-invariants, Commun. Contemp. Math. 2 (2000), 405--459.
  • G. Lu, The Weinstein conjecture on some symplectic manifolds containing the holomorphic spheres, Kyushu J. Math. 52 (1998), 331--351.
  • —, Finiteness of Hofer-Zehnder capacity of neighborhoods of symplectic submanifolds, Int. Math. Res. Not. 2006, no. 76520.
  • D. Mcduff and D. Salamon, J-Holomorphic Curves and Symplectic Topology, Amer. Math. Soc. Colloq. Publ. 52, Amer. Math. Soc., Providence, 2004.
  • D. Mcduff and J. Slimowitz, Hofer-Zehnder capacity and length minimizing Hamiltonian paths, Geom. Topol. 5 (2001), 799--830.
  • C. C. Moore and C. Schochet, Global Analysis on Foliated Spaces, Math. Sci. Res. Inst. Publ. 9, Springer, New York, 1988.
  • J. Moser, A fixed point theorem in symplectic geometry, Acta Math. 141 (1978), 17--34.
  • Y.-G. Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks, I, II, Comm. Pure Appl. Math. 46 (1993), 949--993., 995--1012.
  • —, ``Relative Floer and quantum cohomology and the symplectic topology of Lagrangian submanifolds'' in Contact and Symplectic Geometry (Cambridge, U.K., 1994), Publ. Newton Inst. 8, Cambridge Univ. Press, Cambridge, 1996, 201--267.
  • —, Gromov-Floer theory and disjunction energy of compact Lagrangian embeddings, Math. Res. Lett. 4 (1997), 895--905.
  • —, Chain level Floer theory and Hofer's geometry of the Hamiltonian diffeomorphism group, Asian J. Math. 6 (2002), 579--624.
  • L. Polterovich, Symplectic displacement energy for Lagrangian submanifolds, Ergodic Theory Dynam. Systems 13 (1993), 357--367.
  • —, ``An obstacle to non-Lagrangian intersections'' in The Floer Memorial Volume, Progr. Math. 133, Birkhäuser, Basel, 1995, 575--586.
  • —, The Geometry of the Group of Symplectic Diffeomorphisms, Lectures Math. ETH Zurich, Birkhäuser, Basel, 2001.
  • M. PoźNiak, ``Floer homology, Novikov rings and clean intersections'' in Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc., Providence, 1999, 119--181.
  • D. Salamon, ``Lectures on Floer homology'' in Symplectic Geometry and Topology (Park City, Utah, 1997), IAS/Park City Math. Ser. 7, Amer. Math. Soc., Providence, 1999, 143--229.
  • D. Salamon and E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992), 1303--1360.
  • F. Schlenk, Applications of Hofer's geometry to Hamiltonian dynamics, Comment. Math. Helv. 81 (2006), 105--121.
  • M. Schwarz, Morse Homology, Progr. Math. 111, Birkhäuser, Basel, 1993.
  • —, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193 (2000), 419--461.
  • M. Struwe, Existence of periodic solutions of Hamiltonian systems on almost every energy surface, Bol. Soc. Brasil. Mat. (N.S.) 20 (1990), 49--58.
  • C. Viterbo, A proof of Weinstein's conjecture in $\mathbb R^2n$, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), 337--356.
  • —, Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992), 685--710.
  • —, Exact Lagrange submanifolds, periodic orbits and the cohomology of free loop spaces, J. Differential Geom. 47 (1997), 420--468.
  • —, Functors and computations in Floer homology with applications, I, Geom. Funct. Anal. 9 (1999), 985--1033.
  • A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math. 6 (1971), 329--346.
  • —, Lagrangian submanifolds and Hamiltonian systems, Ann. of Math. (2) 98 (1973), 377--410.
  • —, Lectures on Symplectic Manifolds (Chapel Hill, N.C., 1976), CBMS Regional Conf. Ser. in Math. 29, Amer. Math. Soc., Providence, 1977.
  • —, ``$C^0$ perturbation theorems for symplectic fixed points and Lagrangian intersections'' in Séminare sud-rhodanien de géometrié, III (Lyon, 1983), Travaux en Cours, Hermann, Paris, 1984, 140--144.