Duke Mathematical Journal

Holomorphic curves in complex spaces

Barbara Drinovec Drnovšek and Franc Forstnerič

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We study the existence of topologically closed complex curves normalized by bordered Riemann surfaces in complex spaces. Our main result is that such curves abound in any noncompact complex space admitting an exhaustion function whose Levi form has at least two positive eigenvalues at every point outside a compact set, and this condition is essential. We also construct a Stein neighborhood basis of any compact complex curve with C2-boundary in a complex space

Article information

Duke Math. J., Volume 139, Number 2 (2007), 203-253.

First available in Project Euclid: 31 July 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 32C25: Analytic subsets and submanifolds 32F32: Analytical consequences of geometric convexity (vanishing theorems, etc.) 32H02: Holomorphic mappings, (holomorphic) embeddings and related questions 32H35: Proper mappings, finiteness theorems
Secondary: 14H55: Riemann surfaces; Weierstrass points; gap sequences [See also 30Fxx]


Drinovec Drnovšek, Barbara; Forstnerič, Franc. Holomorphic curves in complex spaces. Duke Math. J. 139 (2007), no. 2, 203--253. doi:10.1215/S0012-7094-07-13921-8. https://projecteuclid.org/euclid.dmj/1185891823

Export citation


  • L. L. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv. 24 (1950), 100--134.
  • A. Andreotti and H. Grauert, Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193--259.
  • D. Barlet, ``How to use the cycle space in complex geometry'' in Several Complex Variables (Berkeley, 1995--1996.), Math. Sci. Res. Inst. Publ. 37, Cambridge Univ. Press, Cambridge, 1999, 25--42.
  • W. Barth, Der Abstand von einer algebraischen Mannig faltigkeit im komplex-projektiven Raum, Math. Ann. 187 (1970), 150--162.
  • H. Behnke and F. Sommer, Theorie der analytischen Funktionen einer komplexen Veränderlichen, 3rd. ed., Grundlehren Math. Wiss. 77, Springer, Berlin, 1965.
  • B. Berndtsson and J.-P. Rosay, Quasi-isometric vector bundles and bounded factorization of holomorphic matrices, Ann. Inst. Fourier (Grenoble) 53 (2003), 885--901.
  • E. Bishop, Mappings of partially analytic spaces, Amer. J. Math. 83 (1961), 209--242.
  • F. Campana and T. Peternell, ``Cycle spaces'' in Several Complex Variables, VII, Encyclopaedia Math. Sci. 74, Springer, Berlin, 1994, 319--349.
  • D. Chakrabarti, Approximation of maps with values in a complex or almost complex manifold, Ph.D. dissertation, University of Wisconsin--Madison, Madison, 2006.
  • —, Coordinate neighborhoods of arcs and the approximation of maps into (almost) complex manifolds, to appear in Michigan Math. J., preprint.
  • S.-C. Chen and M.-C. Shaw, Partial Differential Equations in Several Complex Variables, AMS/IP Studies Adv. Math. 19, Amer. Math. Soc., Providence, 2001.
  • M. Colţoiu, Complete locally pluripolar sets, J. Reine Angew. Math. 412 (1990), 108--112.
  • —, ``$q$-convexity: A survey'' in Complex Analysis and Geometry (Trento, Italy, 1995), Pitman Res. Notes Math. Ser. 366, Longman, Harlow, 1997, 83--93.
  • J.-P. Demailly, Cohomology of $q$-convex spaces in top degrees, Math. Z. 204 (1990), 283--295.
  • J.-P. Demailly, L. Lempert, and B. Shiffman, Algebraic approximations of holomorphic maps from Stein domains to projective manifolds, Duke Math. J. 76 (1994), 333--363.
  • A. Dor, Immersions and embeddings in domains of holomorphy, Trans. Amer. Math. Soc. 347 (1995), 2813--2849.
  • —, A domain in $\C^m$ not containing any proper image of the unit disc, Math. Z. 222 (1996), 615--625.
  • A. Douady, Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, Ann. Inst. Fourier (Grenoble), 16 (1966), 1--95.
  • B. Drinovec Drnovšek, Discs in Stein manifolds containing given discrete sets, Math. Z. 239 (2002), 683--702.
  • —, Proper discs in Stein manifolds avoiding complete pluripolar sets, Math. Res. Lett. 11 (2004), 575--581.
  • —, On proper discs in complex manifolds, to appear in Ann. Inst. Fourier (Grenoble), preprint.
  • D. A. Eisenman, Intrinsic Measures on Complex Manifolds and Holomorphic Mappings, Mem. Amer. Math. Soc. 96, Amer. Math. Soc., Providence, 1970.
  • F. Forstnerič, Noncritical holomorphic functions on Stein manifolds, Acta Math. 191 (2003), 143--189.
  • —, The Oka principle for multivalued sections of ramified mappings, Forum Math. 15 (2003), 309--328.
  • —, Extending holomorphic mappings from subvarieties in Stein manifolds, Ann. Inst. Fourier (Grenoble) 55 (2005), 733--751.
  • —, Runge approximation on convex sets implies Oka's property, Ann. of Math. (2) 163 (2006), 689--707.
  • F. Forstnerič and J. Globevnik, Discs in pseudoconvex domains, Comment. Math. Helv. 67 (1992), 129--145.
  • —, Proper holomorphic discs in $\C^2$, Math. Res. Lett. 8 (2001), 257--274.
  • F. Forstnerič, J. Globevnik, and B. Stensønes, Embedding holomorphic discs through discrete sets, Math. Ann. 305 (1996), 559--569.
  • F. Forstnerič and J. Kozak, Strongly pseudoconvex handlebodies, J. Korean Math. Soc. 40 (2003), 727--745.
  • F. Forstnerič, E. Løw, and N. øvrelid, Solving the $d$ and $\dibar$-equations in thin tubes and applications to mappings, Michigan Math. J. 49 (2001), 369--416.
  • F. Forstnerič and J. Prezelj, Oka's principle for holomorphic fiber bundles with sprays, Math. Ann. 317 (2000), 117--154.
  • F. Forstnerič and M. Slapar, Stein structures and holomorphic mappings, Math. Z. 256 (2007), 615--646.
  • F. Forstnerič and J. Winkelman, Holomorphic discs with dense images, Math. Res. Lett. 12 (2005), 265--268.
  • J. Globevnik, Discs in Stein manifolds, Indiana Univ. Math. J. 49 (2000), 553--574.
  • I. Gohberg, P. Lancaster, and L. Rodman, Invariant subspaces of matrices with applications, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley, New York, 1986.
  • H. Grauert, Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann. 135 (1958), 263--273.
  • —, ``Theory of $q$-convexity and $q$-concavity'' in Several Complex Variables, VII, Encyclopaedia Math. Sci. 74, Springer, Berlin, 1994, 259--284.
  • R. E. Greene and H. Wu, Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier (Grenoble) 25 (1975), 215--235.
  • M. Gromov, Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989), 851--897.
  • R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N.J., 1965.
  • G. M. Henkin, Integral representation of functions which are holomorphic in strictly pseudoconvex regions, and some applications (in Russian), Mat. Sb. (N.S.) 78 (1969), 611--632.; English translation in Math. USSR-Sb. 7 (1969), 597--616.
  • G. M. Henkin and J. Leiterer, Theory of Functions on Complex Manifolds, Monogr. Math. 79, Birkhäuser, Basel, 1984.
  • —, Andreotti-Grauert Theory by Integral Formulas, Progr. Math. 74, Birkhäuser, Boston, 1988.
  • D. Heunemann, An approximation theorem and Oka's principle for holomorphic vector bundles which are continuous on the boundary of strictly pseudoconvex domains, Math. Nachr. 127 (1986), 275--280.
  • —, Theorem B for Stein manifolds with strictly pseudoconvex boundary, Math. Nachr. 128 (1986), 87--101.
  • L. Hörmander, An Introduction to Complex Analysis in Several Variables, 3rd ed., North-Holland Math. Library 7, North-Holland, Amsterdam, 1990.
  • S. Kaliman and M. Zaidenberg, Non-hyperbolic complex space with a hyperbolic normalization, Proc. Amer. Math. Soc. 129 (2001), 1391--1393.
  • N. Kerzman, Hölder and $L\sp{p}$ estimates for solutions of, $\bar \partial u=f$ in strongly pseudoconvex domains, Comm. Pure Appl. Math. 24 (1971), 301--379.
  • S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, 2nd ed., World Sci., Hackensack, N.J., 2005.
  • —, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), 357--416.
  • J. Leiterer, Analytische Faserbündel mit stetigem Rand über streng-pseudokonvexen Gebieten, I, Math. Nachr. 71 (1976), 329--344.; II, Math. Nachr. 72 (1976), 201--217. ${\!}$;
  • —, Theorem B für analytische Funktionen mit stetigen Randwerten, Beiträge Anal. 8 (1976), 95--102.
  • L. Lempert, Algebraic approximations in analytic geometry, Invent. Math. 121 (1995), 335--353.
  • I. Lieb, ``Solutions bornées des équations de Cauchy-Riemann'' in Fonctions de plusieurs variables complexes (Paris, 1970--1973.), Lecture Notes in Math. 409, Springer, Berlin, 1974, 310--326.
  • I. Lieb and J. Michel, The Cauchy-Riemann complex: Integral Formulae and Neumann Problem, Aspects Math. E34, Vieweg, Braunschweig, Germany, 2002.
  • I. Lieb and R. M. Range, Lösungsoperatoren für den Cauchy-Riemann-Komplex mit $\cC^k$-Abschätzungen, Math. Ann. 253 (1980), 145--164.
  • —, Estimates for a class of integral operators and applications to the $\bar\partial$-Neumann problem, Invent. Math. 85 (1986), 415--438.
  • —, Integral representations and estimates in the theory of the $\bar\partial$-Neumann problem, Ann. of Math. (2) 123 (1986), 265--301.
  • J. Michel and A. Perotti, $\mathcal{C}^k$-regularity for the $\overline\partial$-equation on strictly pseudoconvex domains with piecewise smooth boundaries, Math. Z. 203 (1990), 415--427.
  • R. Narasimhan, Imbedding of holomorphically complete complex spaces, Amer. J. Math. 82 (1960), 917--934.
  • —, The Levi problem for complex spaces, Math. Ann. 142 (1960/1961), 355--365.
  • J. Nash, Real algebraic manifolds, Ann. of Math. (2) 56 (1952), 405--421.
  • T. Ohsawa, Completeness of noncompact analytic spaces, Publ. Res. Inst. Math. Sci. 20 (1984), 683--692.
  • M. Peternell, $q$-completeness of subsets in complex projective space, Math. Z. 195 (1987), 443--450.
  • E. Ramírez De Arellano, Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis, Math. Ann. 184 (1969/1970), 172--187.
  • R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Grad. Texts in Math 108, Springer, New York, 1986.
  • R. M. Range and Y.-T. Siu, Uniform estimates for the $\dibar$-equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann. 206 (1973), 325--354.
  • J.-P. Rosay, Approximation of non-holomorphic maps, and Poletsky theory of discs, J. Korean Math. Soc. 40 (2003), 423--434.
  • H. L. Royden, The extension of regular holomorphic maps, Proc. Amer. Math. Soc. 43 (1974), 306--310.
  • M. Schneider, Über eine Vermutung von Hartshorne, Math. Ann. 201 (1973), 221--229.
  • A. Sebbar, Principe d'Oka-Grauert dans $A^\infty$, Math. Z. 201 (1989), 561--581.
  • Y.-T. Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38 (1976/1977), 89--100.
  • G. Springer, Introduction to Riemann Surfaces, Addison-Wesley, Reading, Mass., 1957.
  • G. Stolzenberg, Polynomially and rationally convex sets, Acta Math. 109 (1963), 259--289.
  • J. Wermer, The hull of a curve in $\C^n$, Ann. of Math. (2) 68 (1958), 550--561.
  • E. F. Wold, Embedding Riemann surfaces properly in $\C^2$, Internat. J. Math. 17 (2006), 963--974.
  • —, Proper holomorphic embeddings of finitely and some infinitely connected subsets of, $\C$ into $\C^2$, Math. Z. 252 (2006), 1--9.
  • —, Embedding subsets of tori properly into $\C^2$, preprint\arxivmath/0602443v5[math.CV]