Duke Mathematical Journal

Khovanov-Rozansky homology of two-bridge knots and links

Jacob Rasmussen

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We compute the reduced version of Khovanov and Rozansky's sl(N) homology for two-bridge knots and links. The answer is expressed in terms of the skein polynomial of Hoste, Ocneanu, Millett, Freyd, Lickorish, and Yetter (or HOMFLY polynomial; see [6]) and signature

Article information

Source
Duke Math. J., Volume 136, Number 3 (2007), 551-583.

Dates
First available in Project Euclid: 29 January 2007

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1170084898

Digital Object Identifier
doi:10.1215/S0012-7094-07-13635-4

Mathematical Reviews number (MathSciNet)
MR2309174

Zentralblatt MATH identifier
1125.57004

Subjects
Primary: 57M27: Invariants of knots and 3-manifolds

Citation

Rasmussen, Jacob. Khovanov-Rozansky homology of two-bridge knots and links. Duke Math. J. 136 (2007), no. 3, 551--583. doi:10.1215/S0012-7094-07-13635-4. https://projecteuclid.org/euclid.dmj/1170084898


Export citation

References

  • D. Bar-Natan, On Khovanov's categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002), 337--370.
  • —, FastKh in Mathematica package KnotTheory\`, \href{http://katlas.math.toronto.edu/wiki/Khovanov{\
  • J. S. Carter and M. Saito, Reidemeister moves for surface isotopies and their interpretation as moves to movies, J. Knot Theory Ramifications 2 (1993), 251--284.
  • J. H. Conway, ``An enumeration of knots and links, and some of their algebraic properties'' in Computational Problems in Abstract Algebra (Oxford, 1967), Pergamon, Oxford, 1970, 329--358.
  • N. M. Dunfield, S. Gukov, and J. Rasmussen, The superpolynomial for knot homologies, Experiment. Math. 15 (2006), 129--159.
  • P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 239--246.
  • B. Gornik, Note on Khovanov link cohomology, preprint.
  • J. Green, JavaKh in Mathematica package KnotTheory\`, \href{http://katlas.math.toronto.edu/wiki/Khovanov{\
  • J. Hoste and M. Thistlethwaite, Knotscape, www.math.utk.edu/$\sim$morwen/knotscape.html
  • V. F. R. Jones, On knot invariants related to some statistical mechanical models, Pacific. J. Math. 137 (1989), 311--334.
  • M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), 359--426.
  • —, Patterns in knot cohomology, I, Experiment. Math. 12 (2003), 365--374.
  • M. Khovanov and L. Rozansky, Matrix factorizations and link homology, preprint.
  • —, Matrix factorizations and link homology, II, preprint.
  • E. S. Lee, The support of Khovanov's invariants for alternating knots, preprint.
  • H. Murakami, T. Ohtsuki, and S. Yamada, Homfly polynomial via an invariant of colored plane graphs, Enseign. Math. (2) 44 (1998), 325--360.
  • K. Murasugi, Knot Theory and Its Applications, Birkhäuser, Boston, 1996.
  • J. Rasmussen, Khovanov homology and the slice genus, preprint.
  • A. Shumakovitch, KhoHo, www.geometrie.ch/KhoHo/
  • V. G. Turaev, The Yang-Baxter equation and invariants of links, Invent. Math. 92 (1988), 527--553.