Duke Mathematical Journal

Schrödinger operators with many bound states

David Damanik and Christian Remling

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Consider the Schrödinger operators H±=-d2/dx2±V(x). We present a method for estimating the potential in terms of the negative eigenvalues of these operators. Among the applications are inverse Lieb-Thirring inequalities and several sharp results concerning the spectral properties of H±

Article information

Source
Duke Math. J., Volume 136, Number 1 (2007), 51-80.

Dates
First available in Project Euclid: 4 December 2006

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1165244879

Digital Object Identifier
doi:10.1215/S0012-7094-07-13612-3

Mathematical Reviews number (MathSciNet)
MR2271295

Zentralblatt MATH identifier
0476.03047

Subjects
Primary: 34L15: Eigenvalues, estimation of eigenvalues, upper and lower bounds 81Q10: Selfadjoint operator theory in quantum theory, including spectral analysis

Citation

Damanik, David; Remling, Christian. Schrödinger operators with many bound states. Duke Math. J. 136 (2007), no. 1, 51--80. doi:10.1215/S0012-7094-07-13612-3. https://projecteuclid.org/euclid.dmj/1165244879


Export citation

References

  • M. Christ and A. Kiselev, WKB and spectral analysis of one-dimensional Schrödinger operators with slowly varying potentials, Comm. Math. Phys. 218 (2001), 245--262.
  • —, WKB asymptotic behavior of almost all generalized eigenfunctions for one-dimensional Schrödinger operators with slowly decaying potentials, J. Funct. Anal. 179 (2001), 426--447.
  • R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience, New York, 1953.
  • D. Damanik, D. Hundertmark, R. Killip, and B. Simon, Variational estimates for discrete Schrödinger operators with potentials of indefinite sign, Comm. Math. Phys. 238 (2003), 545--562.
  • D. Damanik and R. Killip, Half-line Schrödinger operators with no bound states, Acta Math. 193 (2004), 31--72.
  • D. Damanik, R. Killip, and B. Simon, Schrödinger operators with few bound states, Comm. Math. Phys. 258 (2005), 741--750.
  • P. Deift and R. Killip, On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials, Comm. Math. Phys. 203 (1999), 341--347.
  • S. A. Denisov, On the application of some of M. G. Krein's results to the spectral analysis of Sturm-Liouville operators, J. Math. Anal. Appl. 261 (2001), 177--191.
  • M. S. P. Eastham, The Asympotic Solution of Linear Differential Systems, London Math. Soc. Monogr. (N.S.) 4, Oxford Univ. Press, New York, 1989.
  • K. J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Math. 85, Cambridge Univ. Press, Cambridge, 1986.
  • C. L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9 (1983), 129--206.
  • V. Glaser, H. Grosse, and A. Martin, Bounds on the number of eigenvalues of the Schrödinger operator, Comm. Math. Phys. 59 (1978), 197--212.
  • C. Jacobi, Zur Theorie der Variations-Rechnung und der Differential-Gleichungen, J. Reine Angew. Math. 17 (1837), 68--82.
  • R. Killip and B. Simon, Sum rules for Jacobi matrices and their applications to spectral theory, Ann. of Math. (2) 158 (2003), 253--321.
  • A. Kiselev, Y. Last, and B. Simon, Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators, Comm. Math. Phys. 194 (1998), 1--45.
  • M. G. KreĭN, Continuous analogues of propositions on polynomials orthogonal on the unit circle (in Russian), Dokl. Akad. Nauk SSSR (N.S.) 105 (1955), 637--640.
  • S. Kupin, On a spectral property of Jacobi matrices, Proc. Amer. Math. Soc. 132 (2004), 1377--1383.
  • A. Laptev, S. Naboko, and O. Safronov, On new relations between spectral properties of Jacobi matrices and their coefficients, Comm. Math. Phys. 241 (2003), 91--110.
  • A. Laptev and T. Weidl, ``Recent results on Lieb-Thirring inequalities'' in Journées ``Équations aux Dérivées Partielles'' (La Chapelle sur Erdre, France, 2000), Univ. Nantes, Nantes, 2000, exp. no. 20.
  • C. Muscalu, T. Tao, and C. Thiele, A Carleson theorem for a Cantor group model of the scattering transform, Nonlinearity 16 (2003), 219--246.
  • —, A counterexample to a multilinear endpoint question of Christ and Kiselev, Math. Res. Lett. 10 (2003), 237--246.
  • F. Nazarov, F. Peherstorfer, A. Volberg, and P. Yuditskii, On generalized sum rules for Jacobi matrices, Int. Math. Res. Not. 2005, no. 3, 155--186.
  • M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV: Analysis of Operators. Academic Press, New York 1978.
  • C. Remling, The absolutely continuous spectrum of one-dimensional Schrödinger operators with decaying potentials, Comm. Math. Phys. 193 (1998), 151--170.
  • —, Embedded singular continuous spectrum for one-dimensional Schrödinger operators, Trans. Amer. Math. Soc. 351 (1999), 2479--2497.
  • —, Bounds on embedded singular spectrum for one-dimensional Schrödinger operators, Proc. Amer. Math. Soc. 128 (2000), 161--171.
  • A. Rybkin, On the absolutely continuous and negative discrete spectra of Schrödinger operators on the line with locally integrable globally square summable potentials, J. Math. Phys. 45 (2004), 1418--1425.
  • O. Safronov, Multi-dimensional Schrödinger operators with some negative spectrum, preprint, 2006.
  • U.-W. Schmincke, On Schrödinger's factorization method for Sturm-Liouville operators, Proc. Roy. Soc. Edinburgh Sect. A 80 (1978), 67--84.
  • B. Simon and A. Zlatoš, Sum rules and the Szegö condition for orthogonal polynomials on the real line, Comm. Math. Phys. 242 (2003), 393--423.
  • A. Teplyaev, A note on the theorems of M. G. Krein and L. A. Sakhnovich on continuous analogs of orthogonal polynomials on the circle, J. Funct. Anal. 226 (2005), 257--280.
  • V. E. Zakharov and L. D. Faddeev, The Korteweg de Vries equation is a fully integrable Hamiltonian system, Functional Anal. Appl. 5 (1971), 280--287.
  • A. Zygmund, Trigonometric Series, Vols. I, II, 2nd ed., Cambridge Univ. Press, New York, 1959.