Duke Mathematical Journal
- Duke Math. J.
- Volume 134, Number 3 (2006), 421-452.
The local lifting problem for dihedral groups
Irene I. Bouw and Stefan Wewers
Abstract
Let be the dihedral group of order , where is an odd prime. Let be an algebraically closed field of characteristic . We show that any action of on the ring can be lifted to an action on , where is some complete discrete valuation ring with residue field and fraction field of characteristic
Article information
Source
Duke Math. J., Volume 134, Number 3 (2006), 421-452.
Dates
First available in Project Euclid: 28 August 2006
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1156771900
Digital Object Identifier
doi:10.1215/S0012-7094-06-13431-2
Mathematical Reviews number (MathSciNet)
MR2254623
Zentralblatt MATH identifier
1108.14025
Subjects
Primary: 14H37: Automorphisms
Secondary: 11G20: Curves over finite and local fields [See also 14H25] 14D15: Formal methods; deformations [See also 13D10, 14B07, 32Gxx]
Citation
Bouw, Irene I.; Wewers, Stefan. The local lifting problem for dihedral groups. Duke Math. J. 134 (2006), no. 3, 421--452. doi:10.1215/S0012-7094-06-13431-2. https://projecteuclid.org/euclid.dmj/1156771900