Duke Mathematical Journal

Irreducible symplectic 4-folds and Eisenbud-Popescu-Walter sextics

Kieran G. O'Grady

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Eisenbud, Popescu, and Walter [4] have constructed certain special sextic hypersurfaces in P5 as Lagrangian degeneracy loci. We prove that the natural double cover of a generic Eisenbud-Popescu-Walter (EPW) sextic is a deformation of the Hilbert square of a K3-surface (K3)[2] and that the family of such varieties is locally complete for deformations that keep the hyperplane class of type (1,1); thus we get an example similar to that (discovered by Beauville and Donagi [2]) of the Fano variety of lines on a cubic 4-fold. Conversely, suppose that X is a numerical (K3)[2], suppose that H is an ample divisor on X of square 2 for Beauville's quadratic form, and suppose that the map X|H| is the composition of the quotient XY for an antisymplectic involution on X followed by an immersion Y|H|; then Y is an EPW sextic, and XY is the natural double cover

Article information

Source
Duke Math. J., Volume 134, Number 1 (2006), 99-137.

Dates
First available in Project Euclid: 4 July 2006

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1152018505

Digital Object Identifier
doi:10.1215/S0012-7094-06-13413-0

Mathematical Reviews number (MathSciNet)
MR2239344

Zentralblatt MATH identifier
1105.14051

Subjects
Primary: 14J35: $4$-folds
Secondary: 14J10: Families, moduli, classification: algebraic theory 53C26: Hyper-Kähler and quaternionic Kähler geometry, "special" geometry

Citation

O'Grady, Kieran G. Irreducible symplectic $4$ -folds and Eisenbud-Popescu-Walter sextics. Duke Math. J. 134 (2006), no. 1, 99--137. doi:10.1215/S0012-7094-06-13413-0. https://projecteuclid.org/euclid.dmj/1152018505


Export citation

References

  • A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), 755--782.
  • A. Beauville and R. Donagi, La variété des droites d'une hypersurface cubique de dimension $4$, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 703--706.
  • G. Casnati and F. Catanese, Even sets of nodes are bundle symmetric, J. Differential Geom. 47 (1997), 237--256.
  • D. Eisenbud, S. Popescu, and C. Walter, Lagrangian subbundles and codimension $3$ subcanonical subschemes, Duke Math. J. 107 (2001), 427--467.
  • W. Fulton and P. Pragacz, Schubert Varieties and Degeneracy Loci, Lecture Notes in Math. 1689, Springer, Berlin, 1998.
  • F. J. Gallego and B. P. Purnaprajna, Very ampleness and higher syzygies for Calabi-Yau threefolds, Math. Ann. 312 (1998), 133--149.
  • D. Gieseker, ``Geometric invariant theory and applications to moduli problems'' in Invariant Theory (Montecatini, Italy, 1982), Lecture Notes in Math. 996, Springer, Berlin, 1983, 45--73.
  • D. Huybrechts, Compact hyper-Kähler manifolds: Basic results, Invent. Math. 135 (1999), 63--113.; Erratum, Invent. Math. 152 (2003), 209--212.
  • A. Iliev and K. Ranestad, Addendum to ʽʽ K$3$ surfaces of genus $8$ and varieties of sums of powers of cubic fourfolds,ʼʼ preprint, 2002.
  • V. A. Iskovskih, Fano threefolds, I, Math. USSR-Izv. 11 (1977), no. 3, 485--527.
  • S. Mukai, Moduli of vector bundles on $K3$ surfaces and symplectic manifolds, Sugaku Expositions 1 (1988), 139--174.
  • D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory, 3rd ed., Ergeb. Math. Grenzgeb. (2) 34, Springer, Berlin, 1994.
  • K. G. O'Grady, Involutions and linear systems on holomorphic symplectic manifolds, Geom. Funct. Anal. 15 (2005), 1223--1274.
  • —, Irreducible symplectic $4$-folds numerically equivalent to $(K3)$, preprint.
  • C. Okonek, M. Schneider, and H. Spindler, Vector Bundles on Complex Projective Spaces, Progr. Math. 3, Birkhäuser, Boston, 1980.