Duke Mathematical Journal

Noncontractible periodic orbits in cotangent bundles and Floer homology

Joa Weber

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let M be a closed connected Riemannian manifold, and let α be a homotopy class of free loops in M. Then, for every compactly supported time-dependent Hamiltonian on the open unit disk cotangent bundle which is sufficiently large over the zero section, we prove the existence of a 1-periodic orbit whose projection to M represents α. The proof shows that the Biran-Polterovich-Salamon capacity of the open unit disk cotangent bundle relative to the zero section is finite. If M is not simply connected, this leads to an existence result for noncontractible periodic orbits on level hypersurfaces corresponding to a dense set of values of any proper Hamiltonian on T*M bounded from below, whenever the levels enclose M. This implies a version of the Weinstein conjecture including multiplicities; we prove existence of closed characteristics—one associated to each nontrivial α—on every contact-type hypersurface in T*M enclosing M

Article information

Duke Math. J., Volume 133, Number 3 (2006), 527-568.

First available in Project Euclid: 13 June 2006

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 70H12: Periodic and almost periodic solutions
Secondary: 53D40: Floer homology and cohomology, symplectic aspects 37J45: Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods


Weber, Joa. Noncontractible periodic orbits in cotangent bundles and Floer homology. Duke Math. J. 133 (2006), no. 3, 527--568. doi:10.1215/S0012-7094-06-13334-3. https://projecteuclid.org/euclid.dmj/1150201201

Export citation


  • A. Abbondandolo and M. Schwarz, On the Floer homology of cotangent bundles, Comm. Pure Appl. Math. 59 (2006), 254--316.
  • P. Biran, L. Polterovich, and D. Salamon, Propagation in Hamiltonian dynamics and relative symplectic homology, Duke Math. J. 119 (2003), 65--118.
  • R. Bott, Lectures on Morse theory, old and new, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 331--358.
  • K. Cieliebak, Pseudo-holomorphic curves and periodic orbits on cotangent bundles, J. Math. Pures Appl. (9) 73 (1994), 251--278.
  • —, Symplectic boundaries: Closed characteristics and action spectra, Ph.D. dissertation, Eidgenössische Technische Hochschule Zürich, 1996, Diss. ETH no. 11610.
  • K. Cieliebak, A. Floer, and H. Hofer, Symplectic homology, II: A general construction, Math. Z. 218 (1995), 103--122.
  • A. Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989), 575--611.
  • A. Floer and H. Hofer, Symplectic homology, I: Open sets in $\C^n$, Math. Z. 215 (1994), 37--88.
  • A. Floer, H. Hofer, and D. A. Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995), 251--292.
  • D. Gatien and F. Lalonde, Holomorphic cylinders with Lagrangian boundaries and Hamiltonian dynamics, Duke Math. J. 102 (2000), 485--511.
  • D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss. 224, Springer, Berlin, 1977.
  • V. L. Ginzburg, ``The Weinstein conjecture and theorems of nearby and almost existence'' in The Breadth of Symplectic and Poisson Geometry, Progr. Math. 232, Birkhäuser, Boston, 2005, 139--172.
  • H. Hofer and C. Viterbo, The Weinstein conjecture in cotangent bundles and related results, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), 411--445.
  • H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Adv. Texts Basler Lehrbücher, Birkhäuser, Basel, 1994.
  • J. Jost, Riemannian Geometry and Geometric Analysis, Universitext, Springer, Berlin, 1995.
  • Y.-J. Lee, Non-contractible periodic orbits, Gromov invariants, and Floer-theoretic torsions, preprint.
  • A. Oancea, The Leray-Serre spectral sequence for Floer homology of compact symplectic manifolds with contact-type boundary, Ph.D. dissertation, Université Paris-Sud XI, L'Unité de Formation et de Recherche Scientifique d'Orsay, 2003.
  • D. A. Salamon, ``Lectures on Floer homology'' in Symplectic Geometry and Topology (Park City, Utah, 1997), IAS/Park City Math. Ser. 7, Amer. Math. Soc., Providence, 1999, 143--229.
  • D. A. Salamon and J. Weber, Floer homology and the heat flow, to appear in Geom. Funct. Anal., preprint, ETH-Zürich, 2003, revised 2004.
  • D. A. Salamon and E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992), 1303--1360.
  • A. Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48 (1942), 883--890.
  • C. Viterbo, A proof of Weinstein's conjecture in $\R^2n$, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), 337--356.
  • —, Exact Lagrange submanifolds, periodic orbits and the cohomology of free loop spaces, J. Differential Geom. 47 (1997), 420--468.
  • —, Functors and computations in Floer homology with applications, I, Geom. Funct. Anal. 9 (1999), 985--1033.
  • —, Functors and computations in Floer homology with applications, II, preprint, 1996; revised 2003, http://www.math.u-psud.fr/$\sim$biblio/pub/1998/abs/ppo1998$_-$15.html
  • J. Weber Perturbed closed geodesics are periodic orbits: Index and transversality, Math. Z. 241 (2002), 45--82.
  • A. Weinstein, On the hypotheses of Rabinowitz' periodic orbit theorems, J. Differential Equations 33 (1979), 353--358.