Duke Mathematical Journal

Nilpotent slices, Hilbert schemes, and the Jones polynomial

Ciprian Manolescu

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Seidel and Smith [33] have constructed an invariant of links as the Floer cohomology for two Lagrangians inside a complex affine variety Y. This variety is the intersection of a semisimple orbit with a transverse slice at a nilpotent in the Lie algebra sl2m. We exhibit bijections between a set of generators for the Seidel-Smith cochain complex, the generators in Bigelow's picture of the Jones polynomial, and the generators of the Heegaard Floer cochain complex for the double branched cover. This is done by presenting Y as an open subset of the Hilbert scheme of a Milnor fiber

Article information

Source
Duke Math. J. Volume 132, Number 2 (2006), 311-369.

Dates
First available in Project Euclid: 16 March 2006

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1142517220

Digital Object Identifier
doi:10.1215/S0012-7094-06-13224-6

Mathematical Reviews number (MathSciNet)
MR2219260

Zentralblatt MATH identifier
1110.57010

Citation

Manolescu, Ciprian. Nilpotent slices, Hilbert schemes, and the Jones polynomial. Duke Math. J. 132 (2006), no. 2, 311--369. doi:10.1215/S0012-7094-06-13224-6. https://projecteuclid.org/euclid.dmj/1142517220


Export citation

References

  • A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), 755--782.
  • S. Bigelow, ``A homological definition of the Jones polynomial'' in Invariants of Knots and 3-Manifolds (Kyoto, 2001), Geom. Topol. Monogr. 4, Geom. Topol. Publ., Coventry, England, 2002, 29--41.
  • A. Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), 513--547.
  • J. Fogarty, Algebraic families on an algebraic surface, Amer. J. Math. 90 (1968), 511--521.
  • K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian intersection Floer theory---anomaly and obstruction, preprint, 2000, http://www.math.kyoto-u.ac.jp/$^\sim$fukaya/fukaya.html
  • A. Grothendieck, ``Techniques de construction et théorèmes d'existence en géométrie algebrique, IV: Les schémas de Hilbert'' in Séminaire Bourbaki, Vol. 6 (1960/61), no. 221, Soc. Math. France, Montrouge, 1995, 249--276.
  • V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 103--111.
  • S. Katz and C.-C. M. Liu, Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc, Adv. Theor. Math. Phys. 5 (2001), 1--49.
  • M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), 359--426.
  • —, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002), 665--741.
  • —, Patterns in knot cohomology, I, Experiment. Math. 12 (2003), 365--374.
  • M. Khovanov and P. Seidel, Quivers, Floer cohomology, and braid group actions, J. Amer. Math. Soc. 15 (2002), 203--271.
  • M. Kontsevich, ``Homological algebra of mirror symmetry'' in Proceedings of the International Congress of Mathematicians, Vol. 1 (Zürich, 1994), Birkhäuser, Basel, 1995, 120--139.
  • P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989), 665\1, --.,683.
  • —, Instantons and the geometry of the nilpotent variety, J. Differential Geom. 32 (1990), 473--490.
  • P. B. Kronheimer and T. S. Mrowka, Gauge theory for embedded surfaces, I, Topology 32 (1993), 773--826.
  • P. B. Kronheimer and H. Nakajima, Yang-Mills instantons on ALE gravitational instantons, Math. Ann. 288 (1990), 263--307.
  • R. J. Lawrence, Homological representations of the Hecke algebra, Comm. Math. Phys. 135 (1990), 141--191.
  • H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), 365--416.
  • —, Lectures on Hilbert Schemes of Points on Surfaces, Univ. Lecture Ser. 18, Amer. Math. Soc., Providence, 1999.
  • Y.-G. Oh, Riemann-Hilbert problem and application to the perturbation theory of analytic discs, Kyungpook Math. J. 35 (1995), 39--75.
  • —, On the structure of pseudo-holomorphic discs with totally real boundary conditions, J. Geom. Anal. 7 (1997), 305--327.
  • P. OzsváTh and Z. Szabó, Holomorphic disks and three-manifold invariants: Properties and applications, Ann. of Math. (2) 159 (2004), 1159--1245.
  • —, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), 1027--1158.
  • —, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005), 1--33.
  • M. PoźNiak, ``Floer homology, Novikov rings and clean intersections'' in Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc., Providence, 1999, 119--181.
  • Z. Qin and W. Wang, Hilbert schemes of points on the minimal resolution and soliton equations, preprint.
  • J. Rasmussen, personal communication, May 2003.
  • —, Khovanov homology and the slice genus, preprint.
  • J. Robbin and D. Salamon, The Maslov index for paths, Topology 32 (1993), 827--844.
  • P. Seidel, Graded Lagrangian submanifolds, Bull. Soc. Math. France 128 (2000), 103--146.
  • —, Symplectic geometry of the adjoint quotient, II, lecture, MSRI Workshop on Symplectic Geometry and Mathematical Physics, Mathematical Sciences and Research Institute, University of California, Berkeley, March 2004.
  • P. Seidel and I. Smith, A link invariant from the symplectic geometry of nilpotent slices, preprint.
  • I. Smith, Symplectic geometry of the adjoint quotient, I, lecture, MSRI Workshop on Symplectic Geometry and Mathematical Physics, Mathematical Sciences and Research Institute, University of California, Berkeley, March 2004.
  • W. Wang, Hilbert schemes, wreath products, and the McKay correspondence, preprint.
  • A. Weinstein, Lagrangian submanifolds and Hamiltonian systems, Ann. of Math. (2) 98 (1973), 377--410.