Duke Mathematical Journal

The geometry of the Eisenstein-Picard modular group

Elisha Falbel and John R. Parker

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The Eisenstein-Picard modular group PU(2,1;Z[ω]) is defined to be the subgroup of PU(2,1) whose entries lie in the ring Z[ω], where ω is a cube root of unity. This group acts isometrically and properly discontinuously on HC2, that is, on the unit ball in C2 with the Bergman metric. We construct a fundamental domain for the action of PU(2,1;Z[ω]) on HC2, which is a 4-simplex with one ideal vertex. As a consequence, we elicit a presentation of the group (see Theorem 5.9). This seems to be the simplest fundamental domain for a finite covolume subgroup of PU(2,1)

Article information

Source
Duke Math. J., Volume 131, Number 2 (2006), 249-289.

Dates
First available in Project Euclid: 12 January 2006

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1137077885

Digital Object Identifier
doi:10.1215/S0012-7094-06-13123-X

Mathematical Reviews number (MathSciNet)
MR2219242

Zentralblatt MATH identifier
1109.22007

Subjects
Primary: 22E40: Discrete subgroups of Lie groups [See also 20Hxx, 32Nxx]
Secondary: 11F60: Hecke-Petersson operators, differential operators (several variables)

Citation

Falbel, Elisha; Parker, John R. The geometry of the Eisenstein-Picard modular group. Duke Math. J. 131 (2006), no. 2, 249--289. doi:10.1215/S0012-7094-06-13123-X. https://projecteuclid.org/euclid.dmj/1137077885


Export citation

References

  • R. Alezais, Sur une classe de fonctions hyperfuchsiennes et sur certaines substitutions linéaires qui s'y rapportent, Ann. Sci. École Norm. Sup. (3) 19 (1902), 261--323.
  • M. Deraux, Dirichlet domains for the Mostow lattices, to appear in Experiment. Math., preprint, 2005, http://www-fovrier.ujf-grenoble.fr/$\sim$deraux/recherche/
  • M. Deraux, E. Falbel, and J. Paupert, New constructions of fundamental polyhedra in complex hyperbolic space, Acta Math. 194 (2005), 155--201.
  • D. B. A. Epstein and C. Petronio, An exposition of Poincaré'\!s polyhedron theorem, Enseign. Math. (2) 40 (1994), 113--170.
  • E. Falbel and P.-V. Koseleff, Rigidity and flexibility of triangle groups in complex hyperbolic geometry, Topology 41 (2002), 767--786.
  • E. Falbel and J. R. Parker, The moduli space of the modular group, Invent. Math. 152 (2003), 57--88.
  • H. Garland and M. S. Raghunathan, Fundamental domains for lattices in (R-)rank $1$ semisimple Lie groups, Ann. of Math. (2) 92 (1970), 279--326.
  • G. Giraud, Sur certaines fonctions automorphes de deux variables, Ann. Sci. École Norm. Sup. (3) 38 (1921), 43--164.
  • W. M. Goldman, Complex Hyperbolic Geometry, Oxford Math. Monogr., Oxford Univ. Press, New York, 1999.
  • R.-P. Holzapfel, Invariants of arithmetic ball quotient surfaces, Math. Nachr. 103 (1981), 117--153.
  • —, Geometry and Arithmetic around Euler Partial Differential Equations, Math. Appl. 11, Reidel, Dordrecht, 1986.
  • —, ``Symplectic representation of a braid group on $3$-sheeted covers of the Riemann sphere'' in Conference on Geometry and Mathematical Physics (Zlatograd, Bulgaria, 1995), Serdica Math. J. 23, Bulgarian Acad. Sci., Sofia, 1997, 143--164.
  • A. KoráNyi and H. M. Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math. 80 (1985), 309--338.
  • J. Lehner, A Short Course in Automorphic Functions, Holt, Rinehart and Winston, New York, 1966.
  • R. A. Livné, On certain covers of the universal elliptic curve, Ph.D. dissertation, Harvard University, Cambridge, Mass., 1981.
  • G. D. Mostow, On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86 (1980), 171--276.
  • J. R. Parker, On the volumes of cusped, complex hyperbolic manifolds and orbifolds, Duke Math. J. 94 (1998), 433--464.
  • —, Cone metrics on the sphere and Livné'$\!$s lattices, to appear in Acta Math., preprint, 2005, http://fourier.dur.ac.uk:8000/$^\sim$dma0jrp/#preprints
  • E. Picard, Sur des fonctions de deux variables indépendentes analogues aux fonctions modulaires, Acta Math. 2 (1883), 114--135.
  • —, Sur des formes quadratiques ternaires indéfinies indéterminées conjuguées et sur les fonctions hyperfuchsiennes correspondantes, Acta Math. 5 (1884), 121--182.
  • G. P. Scott, The geometries of $\,3$-manifolds, Bull. London Math. Soc. 15 (1983), 401--487.
  • R. G. Swan, Generators and relations for certain special linear groups, Adv. Math. 6 (1971), 1--77.