Duke Mathematical Journal

Moduli spaces and formal operads

V. Navarro, P. Pascual, A. Roig, and F. Guillén Santos

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let M̲g,l be the moduli space of stable algebraic curves of genus g with l marked points. With the operations that relate the different moduli spaces identifying marked points, the family (M̲g,l)g,l is a modular operad of projective smooth Deligne-Mumford stacks M̲. In this paper, we prove that the modular operad of singular chains S*(M̲;Q) is formal, so it is weakly equivalent to the modular operad of its homology H*(M̲;Q). As a consequence, the up-to-homotopy algebras of these two operads are the same. To obtain this result, we prove a formality theorem for operads analogous to the Deligne-Griffiths-Morgan-Sullivan formality theorem, the existence of minimal models of modular operads, and a characterization of formality for operads which shows that formality is independent of the ground field.

Article information

Source
Duke Math. J., Volume 129, Number 2 (2005), 291-335.

Dates
First available in Project Euclid: 27 September 2005

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1127831440

Digital Object Identifier
doi:10.1215/S0012-7094-05-12924-6

Mathematical Reviews number (MathSciNet)
MR2165544

Zentralblatt MATH identifier
1120.14018

Subjects
Primary: 14H10: Families, moduli (algebraic) 18D50: Operads [See also 55P48]

Citation

Santos, F. Guillén; Navarro, V.; Pascual, P.; Roig, A. Moduli spaces and formal operads. Duke Math. J. 129 (2005), no. 2, 291--335. doi:10.1215/S0012-7094-05-12924-6. https://projecteuclid.org/euclid.dmj/1127831440


Export citation

References

  • W. L. Baily Jr., The decomposition theorem for $V$-manifolds, Amer. J. Math. 78 (1956), 862--888. MR 0100103
  • K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. Math. 127 (1997), 601--617. MR 1431140
  • K. Behrend and Y. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math. J. 85 (1996), 1--60. MR 1412436
  • A. Borel, Linear Algebraic Groups, 2nd ed., Grad. Texts in Math. 126, Springer, New York, 1991. MR 1102012
  • \hspace*-1.5ptP. Deligne, P. Griffiths, J. W. Morgan, and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245--274. MR 0382702
  • S. Eilenberg and S. Mac Lane, On the groups of $H(\Pi,n)$, I, Ann. of Math. (2) 58 (1953), 55--106. MR 0056295
  • E. Getzler, ``Operads and moduli spaces of genus 0 Riemann surfaces'' in The Moduli Space of Curves (Texel Island, Netherlands, 1994), Progr. Math. 129, Birkhäuser, Boston, 1995, 199--230. MR 1363058
  • E. Getzler and J. D. S. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, preprint.}
  • E. Getzler and M. M. Kapranov, ``Cyclic operads and cyclic homology'' in Geometry, Topology, and Physics, Conf. Proc. Lecture Notes Geom. Topology 4, Internat. Press, Cambridge, Mass., 1995, 167--201. MR 1358617
  • —, Modular operads, Compositio Math. 110 (1998), 65--126. MR 1601666
  • V. Ginzburg and M. M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), 203--272. MR 1301191
  • A. Grothendieck, ``Esquisse d'un programme'' in Geometric Galois Actions, 1, London Math. Soc. Lecture Note Ser. 242, Cambridge Univ. Press, Cambridge, 1997, 5--48. MR 1483107
  • S. Halperin and J. Stasheff, Obstructions to homotopy equivalences, Adv. in Math. 32 (1979), 233--279. MR 0539532
  • V. Hinich, Homological algebra of homotopy algebras, Comm. Algebra 25 (1997), 3291--3323. MR 1465117
  • G. M. Kelly and R. Street, ``Review of the elements of $2$-categories'' in Category Seminar (Sydney, 1972/1973), Lecture Notes in Math. 420, Springer, Berlin, 1974, 75--103. MR 0357542
  • T. Kimura, J. Stasheff, and A. A. Voronov, ``Homology of moduli of curves and commutative homotopy algebras'' in The Gelfand Mathematical Seminars, 1993--1995., Gelfand Math. Sem., Birkhäuser, Boston, 1996, 151--170. MR 1398921
  • T. Kimura, A. A. Voronov, and G. J. Zuckerman, ``Homotopy Gerstehaber algebras and topological field theory'' in Operads: Proceedings of Renaissance Conferences (Hartford, Conn./Luminy, France, 1995), Contemp. Math. 202, Amer. Math. Soc., Providence, 1997, 305--333. MR 1436925
  • M. Kontsevich, Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999), 35--72. MR 1718044
  • M. Kontsevich and Y. I. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), 525--562. MR 1291244
  • I. KřIž and J. P. May, Operads, Algebras, Modules and Motives, Astérisque 233, Soc. Math. France, Montrouge, 1995. MR 1361938
  • Y. I. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, Amer. Math. Soc. Colloq. Publ. 47, Amer. Math. Soc., Providence, 1999. MR 1702284
  • M. Markl, Models for operads, Comm. Algebra 24 (1996), 1471--1500. MR 1380606
  • M. Markl, S. Shnider, and J. Stasheff, Operads in Algebra, Topology and Physics, Math. Surveys Monogr. 96, Amer. Math. Soc., Providence, 2002. MR 1898414
  • J. W. Morgan, The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 48 (1978), 137--204. MR 0516917
  • A. Roig, Formalizability of dg modules and morphisms of cdg algebras, Illinois J. Math. 38 (1994), 434--451. MR 1269697
  • L. Schwartz, Lectures on Complex Analytic Manifolds, Tata Inst. Fund. Res. Lectures on Math. and Phys. 4, Springer, Berlin, 1986. MR 0901469
  • D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269--331. MR 0646078
  • D. E. Tamarkin, Formality of chain operad of little discs, Lett. Math. Phys. 66 (2003), 65--72. MR 2064592
  • W. C. Waterhouse, Introduction to Affine Group Schemes, Grad. Texts in Math. 66, Springer, New York, 1979. MR 0547117