Duke Mathematical Journal

Cycles representing the top Chern class of the Hodge bundle on the moduli space of abelian varieties

Torsten Ekedahl and Gerard van der Geer

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We give a generalization to higher genera of the famous formula 12 λ = δ for genus 1

Article information

Duke Math. J., Volume 129, Number 1 (2005), 187-199.

First available in Project Euclid: 15 July 2005

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14C17: Intersection theory, characteristic classes, intersection multiplicities [See also 13H15]
Secondary: 14K10: Algebraic moduli, classification [See also 11G15] 14G35: Modular and Shimura varieties [See also 11F41, 11F46, 11G18]


Ekedahl, Torsten; van der Geer, Gerard. Cycles representing the top Chern class of the Hodge bundle on the moduli space of abelian varieties. Duke Math. J. 129 (2005), no. 1, 187--199. doi:10.1215/S0012-7094-04-12917-3. https://projecteuclid.org/euclid.dmj/1121448868

Export citation


  • A. Borel and J.-P. Serre, Le théorème de Riemann-Roch, Bull. Soc. Math. France 86 (1958), 97--136.
  • T. Ekedahl and G. van der Geer, The order of the top Chern class of the Hodge bundle on the moduli space of abelian varieties, Acta Math. 192 (2004), 95--109.
  • --------, Cycle classes of the E-O stratification on the moduli of abelian varieties, preprint.
  • H. Esnault and E. Viehweg, Chern classes of Gauss-Manin bundles of weight $1$ vanish, $K$-Theory 26 (2002), 287--305.
  • G. Faltings and C.-L. Chai, Degeneration of Abelian Varieties, Ergeb. Math. Grenzgeb. (3) 22, Springer, Berlin, 1990.
  • W. Fulton, Intersection Theory, Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1984.
  • G. van der Geer, The Chow ring of the moduli space of abelian threefolds, J. Algebraic Geom. 7 (1998), 753--770.
  • --. --. --. --., ``Cycles on the moduli space of abelian varieties'' in Moduli of Curves and Abelian Varieties: The Dutch Intercity Seminar on Moduli, Aspects Math. E33, Vieweg, Braunschweig, Germany, 1999, 65--89.
  • S. Keel and L. Sadun, Oort's conjecture for $A_g \otimes \mathbbC$, J. Amer. Math. Soc. 16 (2003), 887--900.
  • N. Koblitz, $p$-adic variation of the zeta-function over families of varieties defined over finite fields, Compositio Math. 31 (1975), 119--218.
  • A. Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999), 495--536.
  • G. Laumon and L. Moret-Bailly, Champs algébriques, Ergeb. Math. Grenzgeb. (3) 39, Springer, Berlin, 2000.
  • D. Mumford, ``Picard groups of moduli problems'' in Arithmetical Algebraic Geometry (West Lafayette, Ind., 1963), Harper and Row, 1965, 33--81.
  • --------, Stability of Projective Varieties, Monogr. Enseign. Math. 24, Enseignement Math., Geneva, 1977.
  • --. --. --. --., ``On the Kodaira dimension of the Siegel modular variety'' in Algebraic Geometry: Open Problems (Ravello, Italy, 1982), Lecture Notes in Math. 997, Springer, Berlin, 1983, 348--375.
  • --. --. --. --., ``Towards an enumerative geometry of the moduli space of curves'' in Arithmetic and Geometry, Vol. II, Progr. Math. 36, Birkhäuser, Boston, 1983, 271--328.
  • F. Oort, ``Complete subvarieties of moduli spaces'' in Abelian Varieties (Egloffstein, Germany, 1993), de Gruyter, Berlin, 1995, 225--235.