Duke Mathematical Journal

Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds

Colin Guillarmou

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


On an asymptotically hyperbolic manifold X n + 1 g , Mazzeo and Melrose [18] have constructed the meromorphic extension of the resolvent R λ : = Δ g - λ n - λ - 1 for the Laplacian. However, there are special points on 1 / 2 n - with which they did not deal. We show that the points of n / 2 - are at most poles of finite multiplicity and that the same property holds for the points of n + 1 / 2 - if and only if the metric is even. On the other hand, there exist some metrics for which R λ has an essential singularity on n + 1 / 2 - , and these cases are generic. At last, to illustrate them, we give some examples with a sequence of poles of R λ approaching an essential singularity.

Article information

Duke Math. J. Volume 129, Number 1 (2005), 1-37.

First available in Project Euclid: 15 July 2005

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 58J50: Spectral problems; spectral geometry; scattering theory [See also 35Pxx]
Secondary: 35P25: Scattering theory [See also 47A40]


Guillarmou, Colin. Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds. Duke Math. J. 129 (2005), no. 1, 1--37. doi:10.1215/S0012-7094-04-12911-2. https://projecteuclid.org/euclid.dmj/1121448862

Export citation


  • S. Agmon, ``On the spectral theory of the Laplacian on non-compact hyperbolic manifolds'' in Journées ``Equations aux dérivées partielles'' (Saint-Jean de Monts, 1987), École Polytech., Palaiseau, 1987, exp. no. XVII.
  • --. --. --. --., A perturbation theory of resonances, Comm. Pure. Appl. Math. 51 (1998), 1255--1309.
  • D. Borthwick, Scattering theory and deformations of asymptotically hyperbolic manifolds, preprint.
  • D. Borthwick and P. Perry, Scattering poles for asymptotically hyperbolic manifolds, Trans. Amer. Math. Soc. 354 (2002), 1215--1231.
  • U. Bunke and M. Olbrich, Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group, Ann. of Math (2) 149 (1999), 627--689.
  • C. Cuevas and G. Vodev, Sharp bounds on the number of resonances for conformally compact manifolds with constant negative curvature near infinity, Commun. Partial Differential Equations 28 (2003), 1685--1705.
  • C. R. Graham, ``Volume and area renormalizations for conformally compact Einstein metrics'' in The Proceedings of the 19th Winter School ``Geometry and Physics'' (Srní, Czech Republic, 1999), Rend. Circ. Mat. Palermo (2), Suppl. 63, Cir. Mat. Palermo, Palermo, 2000, 31--42.
  • C. R. Graham and M. Zworski, Scattering matrix in conformal geometry, Invent. Math. 152 (2003), 89--118.
  • C. Guillarmou, Résonances sur les variétés asymptotiquement hyperboliques, Ph.D. dissertation, Université de Nantes, Nantes, 2004, http://tel.ccsd.cnrs.fr/
  • L. Guillopé, ``Fonctions zêta de Selberg et surfaces de géométrie finie'' in Zeta Functions in Geometry (Tokyo, 1990), Adv. Stud. Pure Math. 21, Kinokuniya, Tokyo, 1992, 33--70.
  • L. Guillopé and M. Zworski, Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity, Asymptot. Anal. 11 (1995), 1--22.
  • --. --. --. --., Upper bounds on the number of resonances for non-compact complete Riemann surfaces, J. Funct. Anal. 129 (1995), 364--389.
  • --. --. --. --., Scattering asymptotics for Riemann surfaces, Ann. of Math. (2) 145 (1997), 597--660.
  • L. Hörmander, The Analysis of Partial Differential Operators, III: Pseudodifferential Operators, Grundlehren Math. Wiss. 274, Springer, Berlin, 1985.
  • M. S. Joshi and A. Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds, Acta Math. 184 (2000), 41--86.
  • R. R. Mazzeo, The Hodge cohomology of a conformally compact metric, J. Differential Geom. 28 (1988), 309--339.
  • --. --. --. --., Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds, Amer. J. Math. 113 (1991), 25--45.
  • R. R. Mazzeo and R. B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987), 260--310.
  • R. B. Melrose, Differential analysis on manifolds with corners, in preparation, preprint, http://www-math.mit.edu/$\sim$rbm/
  • S. J. Patterson and P. A. Perry, The divisor of Selberg's zeta function for Kleinian groups, Duke Math. J. 106 (2001), 321--390.
  • P. A. Perry, The Laplace operator on a hyperbolic manifold, II: Eisenstein series and the scattering matrix, J. Reine Angew. Math. 398 (1989), 67--91.
  • --. --. --. --., The Selberg zeta function and a local trace formula for Kleinian groups, J. Reine Angew. Math. 410 (1990), 116--152.
  • A. Sá Barreto, Radiation fields, scattering and inverse scattering on asymptotically hyperbolic manifolds, to appear in Duke Math. J. 129, preprint.
  • A. Sá Barreto and M. Zworski, Distribution of resonances for spherical black holes, Math. Res. Lett. 4 (1997), 103--121.
  • M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer Ser. Soviet Math., Springer, Berlin, 1987.