Duke Mathematical Journal

Spherical rank rigidity and Blaschke manifolds

K. Shankar, R. Spatzier, and B. Wilking

Abstract

In this paper we give a characterization of locally compact rank one symmetric spaces, which can be seen as an analogue of Ballmann's and Burns and Spatzier's characterizations of nonpositively curved symmetric spaces of higher rank, as well as of Hamenstädt's characterization of negatively curved symmetric spaces. Namely, we show that a complete Riemannian manifold M is locally isometric to a compact, rank one symmetric space if M has sectional curvature at most 1 and each normal geodesic in M has a conjugate point at π .

Article information

Source
Duke Math. J., Volume 128, Number 1 (2005), 65-81.

Dates
First available in Project Euclid: 17 May 2005

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1116361227

Digital Object Identifier
doi:10.1215/S0012-7094-04-12813-1

Mathematical Reviews number (MathSciNet)
MR2137949

Zentralblatt MATH identifier
1082.53051

Subjects
Primary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20]

Citation

Shankar, K.; Spatzier, R.; Wilking, B. Spherical rank rigidity and Blaschke manifolds. Duke Math. J. 128 (2005), no. 1, 65--81. doi:10.1215/S0012-7094-04-12813-1. https://projecteuclid.org/euclid.dmj/1116361227


Export citation

References

  • U. Abresch and W. T. Meyer, ``Injectivity radius estimates and sphere theorems'' in Comparison Geometry (Berkeley, 1993/94), Math. Sci. Res. Inst. Publ. 30, Cambridge Univ. Press, Cambridge, 1997, 1--47.
  • W. Ballmann, Nonpositively curved manifolds of higher rank, Ann. of Math. (2) 122 (1985), 597--609.
  • W. Ballmann, M. Brin, and P. Eberlein, Structure of manifolds of nonpositive curvature, I, Ann. of Math. (2) 122 (1985), 171--203.
  • W. Ballmann, M. Brin, and R. Spatzier, Structure of manifolds of nonpositive curvature, II, Ann. of Math. (2) 122 (1985), 205--235.
  • W. Ballmann, G. Thorbergsson, and W. Ziller, Closed geodesics on positively curved manifolds, Ann. of Math. (2) 116 (1982), 213--247.
  • M. Berger, Sur certaines variétés à géodesiques toutes fermées, Bol. Soc. Brasil. Mat. 9 (1978), 89--96.
  • A. L. Besse, Manifolds All of Whose Geodesics are Closed, Ergeb. Math. Grenzgeb. 93, Springer, Berlin, 1978.
  • K. Burns and R. Spatzier, Manifolds of nonpositive curvature and their buildings, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 35--59.
  • I. Chavel, Riemannian Geometry---A Modern Introduction, Cambridge Tracts in Math. 108, Cambridge Univ. Press, Cambridge, 1993.
  • J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland Math. Library 9, North-Holland, Amsterdam, 1975.
  • M. P. do Carmo, Riemannian Geometry, Math. Theory Appl., Birkhäuser, Boston, 1992.
  • D. Gromoll and W. Meyer, On differentiable functions with isolated critical points, Topology 8 (1969), 361--369.
  • U. Hamenstädt, A geometric characterization of negatively curved, locally symmetric spaces, J. Differential Geom. 32 (1991), 193--221.
  • E. Heintze, personal communication, 1990.
  • W. Klingenberg, Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung, Comment. Math. Helv. 35 (1961), 47--54.
  • V. Y. Rovenskii and V. A. Toponogov, ``Great sphere foliations and manifolds with curvature bounded above,'' Appendix A.2 in Foliations on Riemannian Manifolds and Submanifolds, by V. Y. Rovenskii, Birkhäuser, Boston, 1998, 223--234.
  • R. J. Spatzier and M. Strake, Some examples of higher rank manifolds of nonnegative curvature, Comment. Math. Helv. 65 (1990), 299--317.
  • V. A. Toponogov, Extremal theorems for Riemannian spaces with curvature bounded from above, I (in Russian), Sibirsk. Mat. Ž. 15 (1974), 1348--1371., 1431--1432.
  • B. Wilking, Index parity of closed geodesics and rigidity of Hopf fibrations, Invent. Math. 144 (2001), 281--295.