Duke Mathematical Journal

On a representation of the idele class group related to primes and zeros of L-functions

Ralf Meyer

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let K be a global field. Using natural spaces of functions on the adele ring and the idele class group of K, we construct a virtual representation of the idele class group of K whose character is equal to a variant of the Weil distribution which occurs in André Weil's explicit formula. Hence this representation encodes information about the distribution of the prime ideals of K and is a spectral interpretation for the poles and zeros of the L-function of K. Our construction is motivated by a similar spectral interpretation by Alain Connes.

Article information

Duke Math. J., Volume 127, Number 3 (2005), 519-595.

First available in Project Euclid: 18 April 2005

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11M26: Nonreal zeros of $\zeta (s)$ and $L(s, \chi)$; Riemann and other hypotheses 22D12: Other representations of locally compact groups
Secondary: 18H10 43A35: Positive definite functions on groups, semigroups, etc. 58B34: Noncommutative geometry (à la Connes)


Meyer, Ralf. On a representation of the idele class group related to primes and zeros of L -functions. Duke Math. J. 127 (2005), no. 3, 519--595. doi:10.1215/S0012-7094-04-12734-4. https://projecteuclid.org/euclid.dmj/1113847338

Export citation


  • \lccF. Bruhat, Distributions sur un groupe localement compact et applications à l'étude des représentations des groupes $\wp$-adiques, Bull. Soc. Math. France 89 (1961), 43–75.
  • \lccJ.-F. Burnol, Sur les formules explicites, I: Analyse invariante, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), 423–428.
  • ––––, On Fourier and zeta(s), Forum Math. 16 (2004), 789–840.
  • \lccA. Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta function, Selecta Math. (N.S.) 5 (1999), 29–106.
  • \lccP. Deligne, La conjecture de Weil, II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252.
  • \lccR. Godement and H. Jacquet, Zeta Functions of Simple Algebras, Lecture Notes in Math. 260, Springer, Berlin, 1972.
  • \lccN. Grønbæk, Morita equivalence for self-induced Banach algebras, Houston J. Math. 22 (1996), 109–140.
  • ––––, An imprimitivity theorem for representations of locally compact groups on arbitrary Banach spaces, Pacific J. Math. 184 (1998), 121–148.
  • \lccA. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 1955, no. 16.
  • \lccH. Hogbe-Nlend and V. B. Moscatelli, Nuclear and Conuclear Spaces, North-Holland Math. Stud. 52, North-Holland, Amsterdam, 1981.
  • \lccB. Keller, “Derived categories and their uses” in Handbook of Algebra, Vol. 1, North-Holland, Amsterdam, 1996, 671–701.
  • \lccR. Meyer, Generalized fixed point algebras and square-integrable groups actions, J. Funct. Anal. 186 (2001), 167–195.
  • ––––, “Bornological versus topological analysis in metrizable spaces” in Banach Algebras and Their Applications, Contemp. Math. 363, Amer. Math. Soc., Providence, 2004, 249–278.
  • ––––, Smooth group representations on bornological vector spaces, Bull. Sci. Math. 128 (2004), 127–166.
  • ––––, The cyclic homology and K-theory of certain adelic crossed products, preprint, arXiv:math.KT/0312305
  • \lccA. Neeman, The derived category of an exact category, J. Algebra 135 (1990), 388–394.
  • \lccS. J. Patterson, An Introduction to the Theory of the Riemann Zeta-Function, Cambridge Stud. Adv. Math. 14, Cambridge Univ. Press, Cambridge, 1988.
  • \lccD. Quillen, “Higher algebraic $K$-theory, I” in Algebraic $K$-Theory, I: Higher $K$-Theories (Seattle, 1972), Lecture Notes in Math. 341, Springer, Berlin, 1973, 85–147.
  • \lccJ. T. Tate, “Fourier analysis in number fields and Hecke's zeta-functions” in Algebraic Number Theory (Brighton, U.K., 1965), Thompson, Washington, D.C., 1967, 305–347.
  • \lccA. Weil, Sur les “formules explicites” de la théorie des nombres premiers, Comm. Sém. Math. Univ. Lund 1952, 252–265.
  • ––––, Sur les formules explicites de la théorie des nombres, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 3–18; English translation in Math. USSR-Izv. 6, no. 1 (1972), 1–17.
  • ––––, Basic Number Theory, Classics Math., Springer, Berlin, 1995.