Duke Mathematical Journal
- Duke Math. J.
- Volume 125, Number 3 (2004), 589-619.
Descent Properties of Homotopy K-Theory
Abstract
In this paper, we show that the widely held expectation that Weibel's homotopy K-theory satisfies cdh-descent is indeed fulfilled for schemes over a field of characteristic zero. The main ingredient in the proof is a certain factorization of the resolution of hypersurface singularities. Some consequences are derived. Finally, some evidence for a conjecture of Weibel concerning negative K-theory is given.
Article information
Source
Duke Math. J., Volume 125, Number 3 (2004), 589-619.
Dates
First available in Project Euclid: 18 November 2004
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1100793680
Digital Object Identifier
doi:10.1215/S0012-7094-04-12534-5
Mathematical Reviews number (MathSciNet)
MR2166754
Zentralblatt MATH identifier
1079.19001
Subjects
Primary: 19D35: Negative $K$-theory, NK and Nil 19E08: $K$-theory of schemes [See also 14C35]
Secondary: 14E15: Global theory and resolution of singularities [See also 14B05, 32S20, 32S45]
Citation
Haesemeyer, Christian. Descent Properties of Homotopy K -Theory. Duke Math. J. 125 (2004), no. 3, 589--619. doi:10.1215/S0012-7094-04-12534-5. https://projecteuclid.org/euclid.dmj/1100793680