Duke Mathematical Journal

The log term of the Szegö Kernel

Zhiqin Lu and Gang Tian

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this paper, we study the relations between the log term of the Szegö kernel of the unit circle bundle of the dual line bundle of an ample line bundle over a compact Kähler manifold. We prove a local rigidity theorem. The result is related to the classical Ramadanov conjecture.

Article information

Source
Duke Math. J., Volume 125, Number 2 (2004), 351-387.

Dates
First available in Project Euclid: 27 October 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1098892273

Digital Object Identifier
doi:10.1215/S0012-7094-04-12526-6

Mathematical Reviews number (MathSciNet)
MR2096677

Zentralblatt MATH identifier
1072.32014

Subjects
Primary: 32Q20: Kähler-Einstein manifolds [See also 53Cxx]
Secondary: 53C55: Hermitian and Kählerian manifolds [See also 32Cxx]

Citation

Lu, Zhiqin; Tian, Gang. The log term of the Szegö Kernel. Duke Math. J. 125 (2004), no. 2, 351--387. doi:10.1215/S0012-7094-04-12526-6. https://projecteuclid.org/euclid.dmj/1098892273


Export citation

References

  • \lccS. Bando and T. Mabuchi, “Uniquencess of Einstein Kähler metrics modulo connected group actions” in Algebraic Geometry (Sendai, Japan, 1985). Adv. Stud. Pure Math. 10, North-Holland, Amsterdam, 1987, 11–40.
  • \lccM. Beals, C. Fefferman, and R. Grossman, Strictly pseudoconvex domains in ${\bf C}\sp{n}$, Bull. Amer. Math. Soc. (N.S.) 8 (1983), 125–322.
  • \lccS. Bochner, Curvature in Hermitian metric, Bull. Amer. Math. Soc. 53 (1947), 179–195.
  • \lccL. Boutet de Monvel, “Le noyau de Bergman en dimension $2$” in Séminaire sur les Équations aux Dérivées Partielles 1987–1988, École Polytech., Palaiseau, France, 1988, exp. no. 22.
  • \lccL. Boutet,de,Monvel and J. Sjöstrand, “Sur la singularité des noyaux de Bergman et de Szegö” in Journees: Equations aux Dérivées Partielles de Rennes (1975), Astérisque 34-35, Soc. Math. France, Montrouge, 1976, 123–164.
  • \lccD. Catlin, “The Bergman kernel and a theorem of Tian” in Analysis and Geometry in Several Complex Variables (Katata, Japan, 1997), Trends Math., Birkhäuser, Boston, 1999, 1–23.
  • \lccX. X. Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), 189–234.
  • \lccX. Chen and G. Tian, Ricci flow on Kähler-Einstein surfaces, Invent. Math. 147 (2002), 487–544.
  • ––––, Kähler-Ricci flow on manifolds, preprint, 2001.
  • \lccS. K. Donaldson, Scalar curvature and projective embeddings, I, J. Differential Geom. 59 (2001), 479–522.
  • \lccC. Fefferman, Parabolic invariant theory in complex analysis, Adv. in Math 31 (1979), 131–262.
  • \lccC. R. Graham, “Scalar boundary invariants and the Bergman kernel” in Complex Analysis, II (College Park, Maryland, 1985–86), Lecture Notes in Math. 1276, Springer, Berlin, 1987, 108–135.
  • \lccN. Hanges, Explicit formulas for the Szegö kernel for some domains in ${\bf C}\sp 2$, J. Funct. Anal. 88 (1990), 153–165.
  • \lccK. Hirachi, “Scalar pseudo-Hermitian invariants and the Szegö kernel on three-dimensional CR manifolds” in Complex Geometry (Osaka, Japan, 1990), Lecture Notes in Pure and Appl. Math. 143, Dekker, New York, 1993, 67–76.
  • ––––, The second variation of the Bergman kernel of ellipsoids, Osaka J. Math. 30 (1993), 457–473.
  • \lccK. Hirachi, G. Komatsu, and N. Nakazawa, “Two methods of determining local invariants in the Szegö kernel” in Complex Geometry (Osaka, Japan, 1990), Lecture Notes in Pure and Appl. Math. 143, Dekker, New York, 1993, 77–96.
  • \lccL. H örmander, An Introduction to Complex Analysis in Several Variables, 2nd ed., North-Holland Math. Library 7, North Holland, Amsterdam, 1973,
  • ––––, The Analysis of Linear Partial Differential Operators, I: Distribution Theory and Fourier Analysis, 2nd ed., Springer Study Ed., Springer, Berlin, 1990.
  • \lccZ. Lu, On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Amer. J. Math. 122 (2000), 235–273.
  • \lccH. Luo, Geometric criterion for Gieseker-Mumford stability of polarized manifolds, J. Differential Geom. 49 (1998), 577–599.
  • \lccN. Nakazawa, Asymptotic expansion of the Bergman kernel for strictly pseudoconvex complete Reinhardt domains in $\mathbf{C}\sp 2$, Osaka J. Math. 31 (1994), 291–329.
  • \lccI. P. Ramadanov, A characterization of the balls in ${\bf C}\sp{n}$ by means of the Bergman kernel, C. R. Acad. Bulgare Sci. 34 (1981), 927–929.
  • \lccW.-D. Ruan, Canonical coordinates and Bergman metrics, Comm. Anal. Geom. 6 (1998), 589–631.
  • \lccG. Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), 99–130.
  • ––––, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 137 (1997), 1–37.
  • \lccS. Zelditch, Szegö kernels and a theorem of Tian, Int. Math. Res. Not. 1998, no. 6, 317–331.
  • \lccS. Zhang, Heights and reductions of semi-stable varieties. Compositio Math. 104 (1996), 77–105. \lccS. Zhang, Heights and reductions of semi-stable varieties. Compositio Math. 104 (1996), 77–105. \lccS. Zhang, Heights and reductions of semi-stable varieties. Compositio Math. 104 (1996), 77–105. \lccS. Zhang, Heights and reductions of semi-stable varieties. Compositio Math. 104 (1996), 77–105.