Duke Mathematical Journal

D-modules on the affine Grassmannian and representations of affine Kac-Moody algebras

Edward Frenkel and Dennis Gaitsgory

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $\mathfrak{g}$ be a simple Lie algebra. For a level κ (thought of as a symmetric $\mathfrak{g}$-invariant form of $\mathfrak{g}$, let $\hat{\mathfrak{g}}_\kappa$ be the corresponding affine Kac-Moody algebra. Let GrG be the affine Grassmannian of $\mathfrak{g}$, and let Dκ(GrG)-mod be the category of κ-twisted right D-modules on GrG. By taking global sections of a D-module we obtain a functor Γ:Dκ(GrG)-mod → $\mathfrak{g}$κ-mod. It is known that this functor is exact and faithful when κ is less than critical or irrational. In this paper, we show that the functor Γ is also exact and faithful when κ is the critical level.

Article information

Source
Duke Math. J., Volume 125, Number 2 (2004), 279-327.

Dates
First available in Project Euclid: 27 October 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1098892271

Digital Object Identifier
doi:10.1215/S0012-7094-04-12524-2

Mathematical Reviews number (MathSciNet)
MR2096675

Zentralblatt MATH identifier
1107.17013

Subjects
Primary: 17B67 81R10

Citation

Frenkel, Edward; Gaitsgory, Dennis. D-modules on the affine Grassmannian and representations of affine Kac-Moody algebras. Duke Math. J. 125 (2004), no. 2, 279--327. doi:10.1215/S0012-7094-04-12524-2. https://projecteuclid.org/euclid.dmj/1098892271


Export citation

References

  • \lccS. Arkhipov and D. Gaitsgory, Differential operators on the loop group via chiral algebras, Int. Math. Res. Not. 2002, no. 4, 165–210.
  • \lccA. Beĭlinson and J. Bernstein, Localisation de $g$-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 15–18.
  • \lccA. Beilinson and V. Drinfeld, Chiral Algebras, Amer. Math. Soc. Colloq. Publ. 51, Amer. Math. Soc., Providence, 2004.
  • ––––, Quantization of Hitchin's integrable system and Hecke eigensheaves, preprint, 2000, available at http://www.math.utexas.edu/$\tilde{\ }$benzvi/Math.html
  • \lccD. Eisenbud and E. Frenkel, appendix to Jet schemes of locally complete intersection canonical singularities by M. Mustaţă, Invent. Math. 145 (2001), 397–424.
  • \lccB. Feigin and E. Frenkel, “Affine Kac-Moody algebras at the critical level and Gelfand-Dikiĭ algebras” in Infinite Analysis, Part A (Kyoto, 1991), ed. A. Tsuchiya, T. Eguchi, and M. Jimbo, Adv. Ser. Math. Phys. 16, River Edge, N.J., World Sci., 1992, 197–215.
  • \lccE. Frenkel, Lectures on Wakimoto modules, opers and the center at the critical level, preprint.
  • \lccE. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves, Math. Surveys Monogr. 88, Amer. Math. Soc., Providence, 2001.
  • \lccE. Frenkel and K. Teleman, Verma modules of critical level and differential forms on opers, preprint.
  • \lccV. G. Kac and D. A. Kazhdan, Structure of representations with highest weight of infinite-dimensional Lie algebras, Adv. in Math. 34 (1979), 97–108.
  • \lccE. Frenkel, Lectures on Wakimoto modules, opers and the center at the critical level, preprint.
  • \lccE. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves, Math. Surveys Monogr. 88, Amer. Math. Soc., Providence, 2001.
  • \lccE. Frenkel and K. Teleman, Verma modules of critical level and differential forms on opers, preprint.
  • \lccV. G. Kac and D. A. Kazhdan, Structure of representations with highest weight of infinite-dimensional Lie algebras, Adv. in Math. 34 (1979), 97–108.