Duke Mathematical Journal

Unramified cohomology of quadrics, II

Bruno Kahn and R. Sujatha

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We compute the unramified cohomology of quadrics of dimension 4 in degree 4 over an arbitrary field of characteristic different from 2. We find that it is related to classical invariants of a more elementary nature, such as the group of spinor norms and the projective special orthogonal group modulo Manin's R-equivalence.

Article information

Source
Duke Math. J., Volume 106, Number 3 (2001), 449-484.

Dates
First available in Project Euclid: 13 August 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1092403939

Digital Object Identifier
doi:10.1215/S0012-7094-01-10632-7

Mathematical Reviews number (MathSciNet)
MR1813233

Zentralblatt MATH identifier
1049.11044

Subjects
Primary: 11E81: Algebraic theory of quadratic forms; Witt groups and rings [See also 19G12, 19G24]
Secondary: 11E04: Quadratic forms over general fields 12G05: Galois cohomology [See also 14F22, 16Hxx, 16K50] 14F42: Motivic cohomology; motivic homotopy theory [See also 19E15] 19E15: Algebraic cycles and motivic cohomology [See also 14C25, 14C35, 14F42]

Citation

Kahn, Bruno; Sujatha, R. Unramified cohomology of quadrics, II. Duke Math. J. 106 (2001), no. 3, 449--484. doi:10.1215/S0012-7094-01-10632-7. https://projecteuclid.org/euclid.dmj/1092403939


Export citation

References

  • \lccJ. Kr. Arason, Cohomologische invarianten quadratischer Formen, J. Alg. 36 (1975), 448–\hs491.
  • \lccH. Bass and J. Tate, “The Milnor ring of a global field” in Algebraic $K$-Theory, II: “Classical” Algebraic $K$-Theory and Connections with Arithmetic (Seattle, 1972), Lecture Notes in Math. 342, Springer, Berlin, 1973, 349–\hs446.
  • \lccJ.-L. Colliot-Thélène, “Cycles algébriques de torsion et $K$-théorie algébrique” in Arithmetic Algebraic Geometry (Trento, 1991), Lecture Notes in Math. 1553, Springer, Berlin, 1993, 1–\hs49.
  • \lccJ.-L. Colliot-Thélène and A. Skorobogatov, Groupe de Chow des zéro-cycles sur les fibrés en quadriques, $K$-Theory 7 (1993), 477–500.
  • \lccR. W. Fitzgerald, Witt kernels of function field extensions, Pacific J. Math. 109 (1983), 89–106.
  • \lccW. Jacob and M. Rost, Degree four cohomological invariants for quadratic forms, Invent. Math. 96 (1989), 551–570.
  • \lccB. Kahn, “On the Scharlau transfer” in Quadratic Forms and Real Algebraic Geometry (Corvallis, Ore., 1986), Rocky Mountain J. Math. 19 (1989), 741–747.
  • ––––, Lower $\sH$-cohomology of higher-dimensional quadrics, Arch. Math. (Basel) 65 (1995), 244\hs–250.
  • ––––, Applications of weight-two motivic cohomology, Doc. Math. 1 (1996),395–\hs416, http://www.mathematik.uni-bielefeld.de/documenta/.
  • ––––, “Motivic cohomology of smooth geometrically cellular varieties” in Algebraic $K$-Theory (Seattle, 1997), Proc. Sympos. Pure Math. 67, Amer. Math. Soc., Providence, 1999, 149–174.
  • \lccB. Kahn, M. Rost, and R. Sujatha, Unramified cohomology of quadrics, I, Amer. J. Math. 120 (1998), 841–891.
  • \lccB. Kahn and R. Sujatha, Motivic cohomology and unramified cohomology of quadrics, J. Eur. Math. Soc. (JEMS) 2 (2000), 145–177.
  • \lccN. Karpenko, Algebro-geometric invariants of quadratic forms (in Russian), Algebra i Analiz 2 (1990), 141–162, 262; English translation in Leningrad Math. J. 2 (1991), 119–138.
  • \lccM.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The Book of Involutions, Amer. Math. Soc. Colloq. Publ. 44, Amer. Math. Soc., Providence, 1998.
  • \lccT. Y. Lam, The Algebraic Theory of Quadratic Forms, Math. Lecture Note Ser., Benjamin, Reading, Mass., 1980.
  • \lccA. S. Merkurjev, On the norm residue symbol of degree $2$, Dokl. Akad. Nauk SSSR 261 (1981), 542–547; English translation in Soviet Math. Dokl. 24 (1981), 546–551.
  • ––––, The group $SK_2$ for quaternion algebras (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 310–335; English translation in Math. USSR Izv. 32 (1989), 313–337.
  • ––––, “$K$-theory of simple algebras” in $K$-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras (Santa Barbara, Calif., 1992), Proc. Sympos. Pure Math. 58, Part 1, Amer. Math. Soc., Providence, 1995, 65–83.
  • ––––, “On the norm residue homomorphism for fields” in Mathematics in St. Petersburg, Amer. Math. Soc. Transl. Ser. 174, Amer. Math. Soc., Providence, 1996, 49–71.
  • ––––, $R$-equivalence and rationality problem for semisimple adjoint classical algebraic groups, Inst. Hautes Etudes Sci. Publ. Math. 84 (1996), 189–213.
  • \lccA. S. Merkurjev and A. A. Suslin, The norm residue homomorphism of degree three (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), 339–356; English translation in Math. USSR-Izv. 36 (1991), 349–367.
  • \lccA. S. Merkurjev and J.-P. Tignol, Galois cohomology of biquadratic extensions, Comment. Math. Helv. 68 (1993), 138–169.
  • \lccM. Shyevski [M. SZYJEWSKI], The fifth invariant of quadratic forms (in Russian), Algebra i Analiz. 2 (1990), 213–234; English translation in Leningrad Math. J. 2 (1991), 179–198.
  • \lccA. Suslin, Torsion in $K_2$ of fields, $K$-Theory 1 (1987), 5–29.
  • \lccJ.-P. Tignol, “Corps à involution neutralisés par une extension abélienne élémentaire” in The Braver Group (Les Plans-sur-Bex, 1980), Lecture Notes in Math. 844, Springer, Berlin, 1981, 1–34.
  • \lccV. Voevodsky, The Milnor conjecture, preprint, 1996.
  • \lccE. Witt, Über ein Gegenbeispiel zum Normensatz, Math. Zeit. 39 (1935), 462–\hs467. The norm residue homomorphism of degree three (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), 339–356; English translation in Math. USSR-Izv. 36 (1991), 349–367.
  • \lccA. S. Merkurjev \and J.-P. Tignol, Galois cohomology of biquadratic extensions, Comment. Math. Helv. 68 (1993), 138–169.
  • \lccM. Shyevski [M. SZYJEWSKI], The fifth invariant of quadratic forms (in Russian), Algebra i Analiz. 2 (1990), 213–234; English translation in Leningrad Math. J. 2 (1991), 179–198.
  • \lccA. Suslin, Torsion in $K_2$ of fields, $K$-Theory 1 (1987), 5–29.
  • \lccJ.-P. Tignol, “Corps à involution neutralisés par une extension abélienne élémentaire” in The Braver Group (Les Plans-sur-Bex, 1980), Lecture Notes in Math. 844, Springer, Berlin, 1981, 1–34.
  • \lccV. Voevodsky, The Milnor conjecture, preprint, 1996.
  • \lccE. Witt, Über ein Gegenbeispiel zum Normensatz, Math. Zeit. 39 (1935), 462–\hs467.

See also

  • See also: Bruno Kahn, Markus Rost, R. Sujatha. Unramified cohomology of quadrics, I. Amer. J. Math. Vol. 120, No. 4 (1998), 841-891.