Duke Mathematical Journal

Orbits and invariants associated with a pair of commuting involutions

Aloysius G. Helminck and Gerald W. Schwarz

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let σ,θ be commuting involutions of the connected reductive algebraic group G, where σ,θ, and G are defined over a (usually algebraically closed) field k, char k≠2. We have fixed point groups H:≠Gσ and K:≠Gθ and an action (H×KGG, where ((h, k), g)↦hgk−1, hH, kK, gG. Let G//(H×K) denote Spec $\mathscr{O}$(G)H×K (the categorical quotient).

Let A be maximal among subtori S of G such that θ(s)=σ(s)=s−1 for all sS. There is the associated Weyl group W:=WH×K(A). We show the following.

· The inclusion AG induces an isomorphism A/W$\widetilde{\to}$G//(H×K). In particular, the closed (H×K)-orbits are precisely those which intersect A.

· The fibers of GG//(H×K) are the same as those occurring in certain associated symmetric varieties. In particular, the fibers consist of finitely many orbits.

We investigate

· the structure of W and its relation to other naturally occurring Weyl groups and to the action of σθ on the A-weight spaces of $\mathfrak {g}$;

· the relation of the orbit type stratifications of A/W and G//(H×K).

Along the way we simplify some of R. Richardson's proofs for the symmetric case σ=θ, and at the end we quickly recover results of M. Berger, M. Flensted-Jensen, B. Hoogenboom, and T. Matsuki [Ber], [FJ1], [Hoo], [Mat] for the case k=ℝ.

Article information

Source
Duke Math. J., Volume 106, Number 2 (2001), 237-279.

Dates
First available in Project Euclid: 13 August 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1092403916

Digital Object Identifier
doi:10.1215/S0012-7094-01-10622-4

Mathematical Reviews number (MathSciNet)
MR1813432

Zentralblatt MATH identifier
1015.20031

Subjects
Primary: 20G15: Linear algebraic groups over arbitrary fields
Secondary: 14L30: Group actions on varieties or schemes (quotients) [See also 13A50, 14L24, 14M17] 20G20: Linear algebraic groups over the reals, the complexes, the quaternions 22E46: Semisimple Lie groups and their representations

Citation

Helminck, Aloysius G.; Schwarz, Gerald W. Orbits and invariants associated with a pair of commuting involutions. Duke Math. J. 106 (2001), no. 2, 237--279. doi:10.1215/S0012-7094-01-10622-4. https://projecteuclid.org/euclid.dmj/1092403916


Export citation

References

  • \lccE. van den Ban and H. Schlichtkrull, The most continuous part of the Plancherel decomposition for a reductive symmetric space, Ann. of Math. (2) 145 (1997), 267–364.
  • \lccP. Bardsley and R. W. Richardson, Étale slices for algebraic transformation groups in characteristic $p$, Proc. London Math. Soc. (3) 51 (1985), 295–317.
  • \lccA. Beĭlinson and J. Bernstein, Localisation de $\mathfrak g$-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 15–18.
  • \lccM. Berger, Les espaces symétriques non-compacts, Ann. Sci. École Norm. Sup. (3) 74 (1957), 85–177.
  • \lccD. Birkes, Orbits of linear algebraic groups, Ann. of Math. (2) 93 (1971), 459–475.
  • \lccA. Borel and J. de Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949), 200–221.
  • \lccA. Borel and J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–150.
  • \lccN. Bourbaki, Éléments de Mathématique, fasc. 34: Groupes et algèbres de Lie, chapitres 4, 5, et 6, Actualités Sci. Indust. 1337, Hermann, Paris, 1968.
  • \lccJ.-L. Brylinski and P. Delorme, Vecteurs distributions $H$-invariants pour les séries principales généralisées d'espaces symétriques réductifs et prolongement méromorphe d'intégrales d'Eisenstein, Invent. Math. 109 (1992), 619–664.
  • \lccC. De Concini and C. Procesi, “Complete symmetric varieties” in Invariant Theory (Montecatini, 1982), Lecture Notes in Math. 996, Springer, Berlin, 1983, 1–44.
  • \lccP. Delorme, Formule de Plancherel pour les espaces symétriques réductifs, Ann. of Math. (2) 147 (1998), 417–452.
  • \lccM. Flensted-Jensen, Spherical functions of a real semisimple Lie group: A method of reduction to the complex case, J. Funct. Anal. 30 (1978), 106–146.
  • ––––, Discrete series for semisimple symmetric spaces, Ann. of Math. (2) 111 (1980), 253–311.
  • \lccI. Grojnowski, Character sheaves on symmetric spaces, Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, 1992.
  • \lccW. J. Haboush, Reductive groups are geometrically reductive, Ann. of Math. (2) 102 (1975), 67–83.
  • \lccA. G. Helminck, Algebraic groups with a commuting pair of involutions and semisimple symmetric spaces, Adv. Math. 71 (1988), 21–91.
  • ––––, Tori invariant under an involutorial automorphism, I, Adv. Math. 85 (1991), 1–38.
  • \lccA. G. Helminck and S. P. Wang, On rationality properties of involutions of reductive groups, Adv. Math. 99 (1993), 26–96.
  • \lccB. Hoogenboom, Intertwining Functions on Compact Lie Groups, CWI Tract 5, Centrum Wisk. Inform., Amsterdam, 1984.
  • \lccA. T. James and A. G. Constantine, Generalized Jacobi polynomials as spherical functions of the Grassmann manifold, Proc. London Math. Soc. (3) 29 (1974), 174–192.
  • \lccA. Kirillov, “The orbit method, I: Geometric quantization” in Representation Theory of Groups and Algebras, Contemp. Math. 145, Amer. Math. Soc., Providence, 1993, 1–32.
  • \lccB. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809.
  • \lccD. Luna, “Slices étales” in Sur les groupes algébriques, Bull. Soc. Math. France Mém. 33, Soc. Math. France, Paris, 1973, 81–105.
  • \lccG. Lusztig and D. A. Vogan Jr., Singularities of closures of $K$-orbits on flag manifolds, Invent. Math. 71 (1983), 365–379.
  • \lccT. Matsuki, Double coset decompositions of reductive Lie groups arising from two involutions, J. Algebra 197 (1997), 49–91.
  • \lccD. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory, 3d ed., Ergeb. Math. Grenzgeb. (2), Springer, Berlin, 1994.
  • \lccT. Ōshima and J. Sekiguchi, Eigenspaces of invariant differential operators on an affine symmetric space, Invent. Math. 57 (1980), 1–81.
  • \lccR. W. Richardson, On orbits of algebraic groups and Lie groups, Bull. Austral. Math. Soc. 25 (1982), 1–28.
  • ––––, Orbits, invariants, and representations associated to involutions of reductive groups, Invent. Math. 66 (1982), 287–312.
  • \lccR. W. Richardson and P. J. Slodowy, Minimum vectors for real reductive algebraic groups, J. London Math. Soc. (2) 42 (1990), 409–429.
  • \lccP. J. Slodowy, “Der Scheibensatz für algebraische Transformationsgruppen” in Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem. 13, Birkhäuser, Basel, 1989, 89–113.
  • \lccR. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc. (1968), no. 80.
  • \lccD. A. Vogan, Irreducible characters of semisimple Lie groups, III: Proof of the Kazhdan-Lusztig conjecture in the integral case, Invent. Math. 71 (1983),381–417.
  • \lccT. Vust, Opération de groupes réductifs dans un type de cônes presque homogènes, Bull. Soc. Math. France 102 (1974), 317–333.