Duke Mathematical Journal
- Duke Math. J.
- Volume 124, Number 1 (2004), 105-143.
Multidimensional boundary layers for a singularly perturbed Neumann problem
Andrea Malchiodi and Marcelo Montenegro
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Abstract
We continue the study of [34], proving concentration phenomena for the equation − ε2 Δu + u = up in a smooth bounded domain Ω ⊆ $\mathbb{R}^n$ and with Neumann boundary conditions. The exponent p is greater than or equal to 1, and the parameter ε is converging to zero. For a suitable sequence εj → 0, we prove the existence of positive solutions uj concentrating at the whole boundary of Ω or at some of its components.
Article information
Source
Duke Math. J., Volume 124, Number 1 (2004), 105-143.
Dates
First available in Project Euclid: 30 July 2004
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1091217476
Digital Object Identifier
doi:10.1215/S0012-7094-04-12414-5
Mathematical Reviews number (MathSciNet)
MR2072213
Zentralblatt MATH identifier
1065.35037
Subjects
Primary: 35B25: Singular perturbations 35B34: Resonances 35J20: Variational methods for second-order elliptic equations 35J60: Nonlinear elliptic equations
Citation
Malchiodi, Andrea; Montenegro, Marcelo. Multidimensional boundary layers for a singularly perturbed Neumann problem. Duke Math. J. 124 (2004), no. 1, 105--143. doi:10.1215/S0012-7094-04-12414-5. https://projecteuclid.org/euclid.dmj/1091217476
References
- \lccS. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math. 12 (1959), 623–727. Mathematical Reviews (MathSciNet): MR0125307
Zentralblatt MATH: 0093.10401
Digital Object Identifier: doi:10.1002/cpa.3160120405 - \lccA. Ambrosetti and M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational approach, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), 233–252. Mathematical Reviews (MathSciNet): MR1614571
Digital Object Identifier: doi:10.1016/S0294-1449(97)89300-6 - \lccA. Ambrosetti, M. Badiale, and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal. 140 (1997), 285–300. Mathematical Reviews (MathSciNet): MR1486895
Zentralblatt MATH: 0896.35042
Digital Object Identifier: doi:10.1007/s002050050067 - \lccA. Ambrosetti, A. Malchiodi, and W.-M. Ni, Solutions, concentrating on spheres, to symmetric singularly perturbed problems, C. R. Math. Acad. Sci. Paris 335 (2002), 145–150. Mathematical Reviews (MathSciNet): MR1920010
Zentralblatt MATH: 1072.35068
Digital Object Identifier: doi:10.1016/S1631-073X(02)02414-7 - ––––, Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, I, Comm. Math. Phys. 235 (2003), 427–466. Mathematical Reviews (MathSciNet): MR1974510
Digital Object Identifier: doi:10.1007/s00220-003-0811-y - ––––, Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, II, to appear in Indiana Univ. Math. J.
- \lccA. Ambrosetti, A. Malchiodi, and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Ration. Mech. Anal. 159 (2001), 253–271. Mathematical Reviews (MathSciNet): MR1857674
Zentralblatt MATH: 1040.35107
Digital Object Identifier: doi:10.1007/s002050100152 - \lccM. Badiale and T. D'Aprile, Concentration around a sphere for a singularly perturbed Schrödinger equation, Nonlinear Anal. Ser. A: Theory Methods 49 (2002), 947–985. Mathematical Reviews (MathSciNet): MR1895538
Digital Object Identifier: doi:10.1016/S0362-546X(01)00717-9 - \lccM. Ben Ayed, K. El Mehdi, and M. Hammami, A nonexistence result for Yamabe type problems on thin annuli, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), 715–744. Mathematical Reviews (MathSciNet): MR1922475
Digital Object Identifier: doi:10.1016/S0294-1449(02)00101-4 - \lccV. Benci and T. D'Aprile, The semiclassical limit of the nonlinear Schrödinger equation in a radial potential, J. Differential Equations 184 (2002), 109–138.
- \lccS. Brendle, On solutions to the Ginzburg-Landau equations in higher dimensions, preprint. arXiv: math.DG/0302070
- ––––, On the construction of solutions to the Yang-Mills equations in higher dimensions, preprint. arXiv: math.DG/0302093
- \lccI. Chavel, Riemannian Geometry–-A Modern Introduction, Cambridge Tracts in Math. 108, Cambridge Univ. Press, Cambridge, 1993. Mathematical Reviews (MathSciNet): MR1271141
- \lccS. Cingolani and A. Pistoia, Nonexistence of single blow-up solutions for a nonlinear Schrödinger equation involving critical Sobolev exponent, Z. Angew. Math. Phys. 55 (2004), 201–215. Mathematical Reviews (MathSciNet): MR2047283
Zentralblatt MATH: 1120.35308
Digital Object Identifier: doi:10.1007/s00033-003-1030-2 - \lccE. N. Dancer, New solutions of equations on $\mathbb{R}^n$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), 535–563. Mathematical Reviews (MathSciNet): MR1896077
- ––––, Stable and finite Morse index solutions on $\mathbb{R}^n$ or on bounded domains with small diffusion, to appear in Trans. Amer. Math. Soc.
- \lccE. N. Dancer and S. Yan, Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math. 189 (1999), 241–262. Mathematical Reviews (MathSciNet): MR1696122
Zentralblatt MATH: 0933.35070
Digital Object Identifier: doi:10.2140/pjm.1999.189.241 - \lccT. D'Aprile, On a class of solutions with non-vanishing angular momentum for nonlinear Schrödinger equations, Differential Integral Equations 16 (2003), 349–384.
- \lccM. Del Pino, P. Felmer, and M. Kowalczyk, Boundary spikes in the Gierer-Meinhardt system, Commun. Pure Appl. Anal. 1 (2002), 437–456. Mathematical Reviews (MathSciNet): MR1942277
Zentralblatt MATH: 1163.35354
Digital Object Identifier: doi:10.3934/cpaa.2002.1.437 - \lccM. Del Pino, P. Felmer, and J. Wei, On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal. 31 (1999), 63–79. Mathematical Reviews (MathSciNet): MR1742305
Zentralblatt MATH: 0942.35058
Digital Object Identifier: doi:10.1137/S0036141098332834 - \lccA. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (1986), 397–408. Mathematical Reviews (MathSciNet): MR0867665
Zentralblatt MATH: 0613.35076
Digital Object Identifier: doi:10.1016/0022-1236(86)90096-0 - \lccA. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik (Berlin) 12 (1972), 30–39.
- \lccD. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss. 224, Springer, Berlin, 1977.
- \lccM. Grossi, A. Pistoia, and J. Wei, Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Calc. Var. Partial Differential Equations 11 (2000), 143–175. Mathematical Reviews (MathSciNet): MR1782991
Zentralblatt MATH: 0964.35047
Digital Object Identifier: doi:10.1007/PL00009907 - \lccC. Gui, Multipeak solutions for a semilinear Neumann problem, Duke Math. J. 84 (1996), 739–769. Mathematical Reviews (MathSciNet): MR1408543
Digital Object Identifier: doi:10.1215/S0012-7094-96-08423-9
Project Euclid: euclid.dmj/1077244042 - \lccC. Gui and J. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math. 52 (2000), 522–538.
- \lccC. Gui, J. Wei, and M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), 47–82. Mathematical Reviews (MathSciNet): MR1743431
Digital Object Identifier: doi:10.1016/S0294-1449(99)00104-3 - \lccD. Iron, M. J. Ward, and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Phys. D 150 (2001), 25–62. Mathematical Reviews (MathSciNet): MR1818735
Zentralblatt MATH: 0983.35020
Digital Object Identifier: doi:10.1016/S0167-2789(00)00206-2 - \lccT. Kato, Perturbation Theory for Linear Operators, 2nd ed., Grundlehren Math. Wiss. 132, Springer, Berlin, 1976.
- \lccY. Y. Li, On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations 23 (1998), 487–545. Mathematical Reviews (MathSciNet): MR1620632
Zentralblatt MATH: 0898.35004
Digital Object Identifier: doi:10.1080/03605309808821354 - \lccY. Li and L. Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math. 51 (1998), 1445–1490. Mathematical Reviews (MathSciNet): MR1639159
Zentralblatt MATH: 0933.35083
Digital Object Identifier: doi:10.1002/(SICI)1097-0312(199811/12)51:11/12<1445::AID-CPA9>3.0.CO;2-Z - \lccC.-S. Lin, W.-M. Ni, and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988), 1–27. Mathematical Reviews (MathSciNet): MR0929196
Zentralblatt MATH: 0676.35030
Digital Object Identifier: doi:10.1016/0022-0396(88)90147-7 - \lccA. Malchiodi, Adiabatic limits for some Newtonian systems in $\mathbb{R}^n$, Asymptot. Anal. 25 (2001), 149–181. Mathematical Reviews (MathSciNet): MR1818643
- \lccA. Malchiodi and M. Montenegro, Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math. 55 (2002), 1507–1568. Mathematical Reviews (MathSciNet): MR1923818
Zentralblatt MATH: 1124.35305
Digital Object Identifier: doi:10.1002/cpa.10049 - \lccW.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc. 45 (1998), 9–18. Mathematical Reviews (MathSciNet): MR1490535
- \lccW.-M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (1991), 819–851.
- ––––, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), 247–281. Mathematical Reviews (MathSciNet): MR1219814
Digital Object Identifier: doi:10.1215/S0012-7094-93-07004-4
Project Euclid: euclid.dmj/1077290699 - \lccW.-M. Ni, I. Takagi, and E. Yanagida, “Stability of least energy patterns of the shadow system for an activator-inhibitor model” in Recent Topics in Mathematics Moving Toward Science and Engineering, Japan J. Indust. Appl. Math. 18 (2001), 259–272. Mathematical Reviews (MathSciNet): MR1842911
Zentralblatt MATH: 1200.35172
Digital Object Identifier: doi:10.1007/BF03168574 - \lccY. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys. 131 (1990), 223–253. Mathematical Reviews (MathSciNet): MR1065671
Digital Object Identifier: doi:10.1007/BF02161413
Project Euclid: euclid.cmp/1104200835 - \lccF. Pacard and M. Ritoré, From constant mean curvature hypersurfaces to the gradient theory of phase transitions, preprint. arXiv: math.DG/0302160
Mathematical Reviews (MathSciNet): MR2032110
Digital Object Identifier: doi:10.4310/jdg/1090426999
Project Euclid: euclid.jdg/1090426999 - \lccJ. Shatah and C. Zeng, Periodic solutions for Hamiltonian systems under strong constraining forces, J. Differential Equations 186 (2002), 572–585. Mathematical Reviews (MathSciNet): MR1942222
Zentralblatt MATH: 1014.37038
Digital Object Identifier: doi:10.1016/S0022-0396(02)00035-9 - \lccJ. Shi, Semilinear Neumann boundary value problems on a rectangle, Trans. Amer. Math. Soc. 354 (2002), 3117–3154. Mathematical Reviews (MathSciNet): MR1897394
Zentralblatt MATH: 0992.35031
Digital Object Identifier: doi:10.1090/S0002-9947-02-03007-6 - \lccA. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. London Ser. B Bio. Sci. 237 (1952), 37–72. Zentralblatt MATH: 06853054
- \lccZ. Q. Wang, On the existence of multiple, single-peaked solutions for a semilinear Neumann problem, Arch. Rational Mech. Anal. 120 (1992), 375–399. Mathematical Reviews (MathSciNet): MR1185568
Zentralblatt MATH: 0784.35035
Digital Object Identifier: doi:10.1007/BF00380322 - \lccJ. Wei, On the boundary spike layer solutions to a singularly perturbed Neumann problem, J. Differential Equations 134 (1997), 104–133. Mathematical Reviews (MathSciNet): MR1429093
Zentralblatt MATH: 0873.35007
Digital Object Identifier: doi:10.1006/jdeq.1996.3218

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum
Dávila, Juan, del Pino, Manuel, Dipierro, Serena, and Valdinoci, Enrico, Analysis & PDE, 2015 - A new type of solutions for a singularly perturbed elliptic Neumann problem
Li, Gongbao, Peng, Shuangjie, and Yan, Shusen, Revista Matemática Iberoamericana, 2007 - Single blow-up solutions for a slightly subcritical biharmonic equation
El Mehdi, Khalil, Abstract and Applied Analysis, 2006
- Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum
Dávila, Juan, del Pino, Manuel, Dipierro, Serena, and Valdinoci, Enrico, Analysis & PDE, 2015 - A new type of solutions for a singularly perturbed elliptic Neumann problem
Li, Gongbao, Peng, Shuangjie, and Yan, Shusen, Revista Matemática Iberoamericana, 2007 - Single blow-up solutions for a slightly subcritical biharmonic equation
El Mehdi, Khalil, Abstract and Applied Analysis, 2006 - Blow-up profile of a solution for a nonlinear heat equation with small diffusion
YAGISITA, Hiroki, Journal of the Mathematical Society of Japan, 2004 - Singularly perturbed Neumann problems with potentials
Pomponio, Alessio, Topological Methods in Nonlinear Analysis, 2004 - Nonexistence of positive very weak solutions to an elliptic problem with boundary reactions
Takahashi, Futoshi, Kodai Mathematical Journal, 2014 - Nonradial type II blow up for the energy-supercritical semilinear heat equation
Collot, Charles, Analysis & PDE, 2017 - ON A SYSTEM OF NONLINEAR WAVE EQUATIONS
Meng-Rong Li, Meng-Rong Li and Long-Yi Tsai, Long-Yi Tsai, Taiwanese Journal of Mathematics, 2003 - Singularly perturbed periodic parabolic equations with alternating boundary layer type solutions
Vasil'eva, Adelaida B. and Kalachev, Leonid V., Abstract and Applied Analysis, 2006 - Serrin’s overdetermined problem and constant mean curvature surfaces
Del Pino, Manuel, Pacard, Frank, and Wei, Juncheng, Duke Mathematical Journal, 2015