Duke Mathematical Journal

Cuspidality of symmetric powers with applications

Henry H. Kim and Freydoon Shahidi

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The purpose of this paper is to prove that the symmetric fourth power of a cusp form on ${\rm GL}(2)$, whose existence was proved earlier by the first author, is cuspidal unless the corresponding automorphic representation is of dihedral, tetrahedral, or octahedral type. As a consequence, we prove a number of results toward the Ramanujan-Petersson and Sato-Tate conjectures. In particular, we establish the bound $q\sp {1/9}\sb v$ for unramified Hecke eigenvalues of cusp forms on ${\rm GL}(2)$. Over an arbitrary number field, this is the best bound available at present.

Article information

Source
Duke Math. J., Volume 112, Number 1 (2002), 177-197.

Dates
First available in Project Euclid: 18 June 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1087575125

Digital Object Identifier
doi:10.1215/S0012-9074-02-11215-0

Mathematical Reviews number (MathSciNet)
MR1890650

Zentralblatt MATH identifier
1074.11027

Subjects
Primary: 11F70: Representation-theoretic methods; automorphic representations over local and global fields
Secondary: 11F30: Fourier coefficients of automorphic forms 11R42: Zeta functions and $L$-functions of number fields [See also 11M41, 19F27]

Citation

Kim, Henry H.; Shahidi, Freydoon. Cuspidality of symmetric powers with applications. Duke Math. J. 112 (2002), no. 1, 177--197. doi:10.1215/S0012-9074-02-11215-0. https://projecteuclid.org/euclid.dmj/1087575125


Export citation

References

  • J. Arthur and L. Clozel, Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Ann. of Math. Stud. 120, Princeton Univ. Press, Princeton, 1989.
  • S. Gelbart and H. Jacquet, A relation between automorphic representations of (\GL(2)) and (\GL(3)), Ann. Sci. École Norm. Sup. (4) 11 (1978), 471--552.
  • D. Ginzburg, S. Rallis, and D. Soudry, (L)-functions for symplectic groups, Bull. Soc. Math. France 126 (1998), 181--244.
  • M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties, Ann. of Math. Stud. 151, Princeton Univ. Press, Princeton, 2001.
  • G. Henniart, Une preuve simple des conjectures de Langlands pour (\GL(n)) sur un corps (p)-adique, Invent. Math. 139 (2000), 439--455.
  • H. Jacquet and J. A. Shalika, ``Exterior square (L)-functions'' in Automorphic Forms, Shimura Varieties, and (L)-functions, II (Ann Arbor, Mich., 1988), ed. L. Clozel and J. Milne, Academic Press, Boston, 1990, 143--226.
  • H. Kim, Langlands-Shahidi method and poles of automorphic (L)-functions: Application to exterior square (L)-functions, Canad. J. Math. 51 (1999), 835--849.
  • --. --. --. --., Langlands-Shahidi method and poles of automorphic (L)-functions, II, Israel J. Math. 117 (2000), 261--284.
  • --------, An example of a non-normal quintic automorphic induction, preprint, 2000.
  • --------, Functoriality for the exterior square of (\GL_4) and symmetric fourth of (\GL_2), preprint, 2000.
  • --------, On local (L)-functions and normalized intertwining operators, preprint, 2000.
  • H. Kim and F. Shahidi, Functorial products for (\GL_2\times \GL_3) and functorial symmetric cube for (\GL_2), C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), 599--604.
  • --------, Functorial products for (\GL_2\times \GL_3) and the symmetric cube for (\GL_2), to appear in Ann. of Math. (2).
  • J.-P. Labesse and R. P. Langlands, (L)-indistinguishability for (\SL(2)), Canad. J. Math. 31 (1979), 726--785.
  • R. P. Langlands, ``Problems in the theory of automorphic forms'' in Lectures in Modern Analysis and Applications, III, Lecture Notes in Math. 170, Springer, Berlin, 1970, 18--61.
  • --------, Base change for (\GL(2)), Ann. of Math. Stud. 96, Princeton Univ. Press, Princeton, 1980.
  • --. --. --. --., ``On the classification of irreducible representations of real algebraic groups'' in Representation Theory and Harmonic Analysis on Semisimple Lie Groups, ed. P. J. Sally Jr. and D. A. Vogan, Math. Surveys Monogr. 31, Amer. Math. Soc., Providence, 1989, 101--170.
  • --------, ``Beyond endoscopy'' to appear in Volume in Honor of Joseph Shalika's Sixtieth Birthday, ed. D. Ramakrishnan and F. Shahidi, Johns Hopkins Univ. Press, Baltimore.
  • W. Luo, Z. Rudnick, and P. Sarnak, ``On the generalized Ramanujan conjecture for (\GL(n))" in Automorphic Forms, Automorphic Representations, and Arithmetic (Fort Worth, Tex., 1996), Proc. Sympos. Pure Math. 66, Part 2, Amer. Math. Soc., Providence, 1999, 301--310.
  • C. Moeglin and J.-L. Waldspurger, Le spectre résiduel de (\GL(n)), Ann. Sci. École Norm. Sup. (4) 22 (1989), 605--674.
  • --------, Spectral decomposition and Eisenstein series: Une paraphrase de l'Ecriture, Cambridge Tracts in Math. 113, Cambridge Univ. Press, Cambridge, 1995.
  • D. Prasad and D. Ramakrishnan, ``On the global root numbers of (\GL(n)\times \GL(m))'' in Automorphic Forms, Automorphic Representations, and Arithmetic (Fort Worth, Tex., 1996), Proc. Sympos. Pure Math. 66, Part 2, Amer. Math. Soc., Providence, 1999, 311--330.
  • D. Ramakrishnan, On the coefficients of cusp forms, Math. Res. Lett. 4 (1997), 295--307.
  • --. --. --. --., Modularity of the Rankin-Selberg (L)-series, and multiplicity one for (\SL(2)), Ann. of Math. (2) 152 (2000), 45--111.
  • J.-P. Serre, Abelian (\ell)-adic Representations and Elliptic Curves, W. A. Benjamin, New York, 1968.
  • F. Shahidi, On certain (L)-functions, Amer. J. Math. 103 (1981), 297--355.
  • --. --. --. --., On the Ramanujan conjecture and finiteness of poles for certain (L)-functions, Ann. of Math. (2) 127 (1988), 547--584.
  • --. --. --. --., Third symmetric power (L)-functions for (\GL(2)), Compositio Math. 70 (1989), 245--273.
  • --. --. --. --., A proof of Langlands' conjecture on Plancherel measures: Complementary series for (p)-adic groups, Ann. of Math. (2) 132 (1990), 273--330.
  • --. --. --. --., ``Symmetric power (L)-functions for (\GL(2))'' in Elliptic Curves and Related Topics, ed. H. Kisilevsky and M. R. Murty, CRM Proc. Lecture Notes 4, Amer. Math. Soc., Providence, 1994, 159--182.
  • D. Soudry, The CAP representations of (\GSp(4,\mathbb A)), J. Reine Angew. Math. 383 (1988), 87--108.