Duke Mathematical Journal

Crystal bases and two-sided cells of quantum affine algebras

Jonathan Beck and Hiraku Nakajima

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $\mathfrak{g}$ be an affine Kac-Moody Lie algebra. Let $\mathbf{U}^+$ be the positive part of the Drinfeld-Jimbo quantum enveloping algebra associated to $\mathfrak{g}$. We construct a basis of $\mathbf{U}^+$ which is related to the Kashiwara-Lusztig global crystal basis (or canonical basis) by an upper-triangular matrix (with respect to an explicitly defined ordering) with 1's on the diagonal and with above-diagonal entries in $q_s^{-1} \mathbf{Z}[q_s^{-1}]$. Using this construction, we study the global crystal basis $\mathscr{B}(\widetilde{\mathbf{U}})$ of the modified quantum enveloping algebra defined by Lusztig. We obtain a Peter-Weyl-like decomposition of the crystal $\mathscr{B}(\widetilde{\mathbf{U}})$ (Th. 4.18), as well as an explicit description of two-sided cells of $\mathscr{B}(\widetilde{\mathbf{U}})$ and the limit algebra of $\widetilde{\mathbf{U}}$ at $q=0$ (Th. 6.44).

Article information

Source
Duke Math. J., Volume 123, Number 2 (2004), 335-402.

Dates
First available in Project Euclid: 11 June 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1086957676

Digital Object Identifier
doi:10.1215/S0012-7094-04-12325-2X

Mathematical Reviews number (MathSciNet)
MR2066942

Zentralblatt MATH identifier
1062.17006

Subjects
Primary: 17B37: Quantum groups (quantized enveloping algebras) and related deformations [See also 16T20, 20G42, 81R50, 82B23]

Citation

Beck, Jonathan; Nakajima, Hiraku. Crystal bases and two-sided cells of quantum affine algebras. Duke Math. J. 123 (2004), no. 2, 335--402. doi:10.1215/S0012-7094-04-12325-2X. https://projecteuclid.org/euclid.dmj/1086957676


Export citation

References

  • T. Akasaka, An integral PBW basis of the quantum affine algebra of type $A_2^{(2)}$, Publ. Res. Inst. Math. Sci. 38 (2002), 803–894.
  • T. Akasaka and M. Kashiwara, Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci. 33 (1997), 839–867.
  • J. Beck, Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994), 555–568.
  • –. –. –. –., Convex bases of PBW type for quantum affine algebras, Comm. Math. Phys. 165 (1994), 193–199.
  • –. –. –. –., Crystal structure of level zero extremal weight modules, Lett. Math. Phys. 61 (2002), 221–229.
  • J. Beck, V. Chari, and A. Pressley, An algebraic characterization of the affine canonical basis, Duke Math. J. 99 (1999), 455–487.
  • R. Bezrukavnikov and V. Ostrik, On tensor categories attached to cells in affine Weyl groups, II, preprint.
  • V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1994.
  • –. –. –. –., Minimal affinizations of representations of quantum groups: The simply laced case, J. Algebra 184 (1996), 1–30.
  • –. –. –. –., Quantum affine algebras at roots of unity, Represent. Theory 1 (1997), 280–328.
  • –. –. –. –., Twisted quantum affine algebras, Comm. Math. Phys. 196 (1998), 461–476.
  • I. Damiani, La $R$-matrice pour les algèbres quantiques de type affine non tordu, Ann. Sci. École Norm. Sup. (4) 31 (1998), 493–523.
  • –. –. –. –., “The $R$-matrix for (twisted) affine algebras” in Representations and Quantizations (Shanghai, 1998), China High. Educ. Press, Beijing, 2000, 89–144.
  • E. Frenkel and E. Mukhin, Combinatorics of $q$-characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys. 216 (2001), 23–57.
  • H. Garland, The arithmetic theory of loop algebras, J. Algebra 53 (1978), 480–551.
  • V. G. Kac, Infinite-Dimensional Lie Algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990.
  • M. Kashiwara, On crystal bases of the $q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465–516.
  • –. –. –. –., Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), 383–413.
  • –. –. –. –., On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002), 117–175.
  • S. Z. Levendorskiĭ and Y. S. Soĭbelman, Some applications of the quantum Weyl groups, J. Geom. Phys. 7 (1990), 241–254.
  • G. Lusztig, Cells in affine Weyl groups, IV, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), 297–328.
  • –. –. –. –., Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447–498.
  • –. –. –. –., Canonical bases in tensor products, Proc. Nat. Acad. Sci. U.S.A. 89 (1992), 8177–8179.
  • ––––, Introduction to Quantum Groups, Progr. Math. 110, Birkhäuser, Boston, 1993.
  • –. –. –. –., “Quantum groups at $v=\infty$” in Functional Analysis on the Eve of the 21st Century, Vol. 1 (New Brunswick, N.J., 1993), Progr. Math. 131, Birkhäuser, Boston, 1995, 199–221.
  • –. –. –. –., Braid group action and canonical bases, Adv. Math. 122 (1996), 237–261.
  • I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford Math. Monogr., Oxford Univ. Press, New York, 1995.
  • K. McGerty, Cells in quantum affine ${\mathfrak{sl}}_n$, Int. Math. Res. Not. 2003, no. 24, 1341–1361.
  • D. Mitzman, Integral Bases for Affine Lie Algebras and Their Universal Enveloping Algebras, Contemp. Math. 40, Amer. Math. Soc., Providence, 1985.
  • H. Nakajima, Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), 145–238.
  • ––––, Extremal weight modules of quantum affine algebras, to appear in Adv. Stud. Pure Math. 40, Math. Soc. Japan, Tokyo, 2004, preprint.
  • T. Nakashima, Crystallized Peter-Weyl type decomposition for level $0$ part of modified quantum algebra $\tilde U\sb q(\widehat{{\mathfrak s}{\mathfrak l}}\sb 2)\sb 0$, J. Algebra 189 (1997), 150–186.
  • Y. Saito, PBW basis of quantized universal enveloping algebras, Publ. Res. Inst. Math. Sci. 30 (1994), 209–232.
  • M. Varagnolo and E. Vasserot, Canonical bases and quiver varieties, Represent. Theory 7 (2003), 227–258.
  • N. Xi, The based ring of two-sided cells of affine Weyl groups of type $\tilde A_{n-1}$, Mem. Amer. Math. Soc. 157 (2002), no. 749.