Duke Mathematical Journal

$\mathcal{D}$-modules and characters of semisimple Lie groups

Esther Galina and Yves Laurent

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

A famous theorem of Harish-Chandra asserts that all invariant eigendistributions on a semisimple Lie group are locally integrable functions. We show that this result and its extension to symmetric pairs are consequences of an algebraic property of the holonomic $\mathcal{D}$-module defined by Hotta and Kashiwara.

Article information

Source
Duke Math. J., Volume 123, Number 2 (2004), 265-309.

Dates
First available in Project Euclid: 11 June 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1086957673

Digital Object Identifier
doi:10.1215/S0012-7094-04-12322-X

Mathematical Reviews number (MathSciNet)
MR2066939

Zentralblatt MATH identifier
1057.22018

Subjects
Primary: 35A27 35D10 17B15

Citation

Galina, Esther; Laurent, Yves. $\mathcal{D}$-modules and characters of semisimple Lie groups. Duke Math. J. 123 (2004), no. 2, 265--309. doi:10.1215/S0012-7094-04-12322-X. https://projecteuclid.org/euclid.dmj/1086957673


Export citation

References

  • M. Atiyah, “Characters of semisimple Lie groups (lecture notes, 1976)” in Collected Works, Vol. 4: Index Theory, 2, Oxford Sci. Publ., Oxford Univ. Press, New York, 1988, 491–557.
  • J.-E. Björk, Rings of Differential Operators, North-Holland Math. Library 21, North-Holland, Amsterdam, 1979.
  • ––––, Analytic $\mathcal D$-Modules and Applications, Math. Appl. 247, Kluwer, Dordrecht, Netherlands, 1993.
  • N. Bourbaki, Éléments de mathématique, fasc. 38: Groupes et algèbres de Lie, chapitre 8: Algèbres de Lie semi-simples déployées, Actualités Sci. Indust. 1364, Hermann, Paris, 1975.
  • Harish-Chandra, Invariant eigendistributions on semisimple Lie groups, Bull. Amer. Math. Soc. 69 (1963), 117–123.
  • –. –. –. –., Invariant eigendistributions on a semisimple Lie group, Trans. Amer. Math. Soc. 119 (1965), 457–508.
  • S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure Appl. Math. 80, Academic Press, New York, 1978.
  • R. Hotta and M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra, Invent. Math. 75 (1984), 327–358.
  • M. Kashiwara, On holonomic systems of differential equations, II, Invent. Math. 49 (1978), 121–135.
  • ––––, Systems of Microdifferential Equations, Progr. Math. 34, Birkhäuser, Boston, 1983.
  • –. –. –. –., “Vanishing cycles and holonomic systems of differential equations” in Algebraic Geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math. 1016, Springer, Berlin, 1983, 134–142.
  • –. –. –. –., The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 20 (1984), 319–365.
  • M. Kashiwara and T. Kawai, “Second-microlocalization and asymptotic expansions” in Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory (Les Houches, France, 1979), Lecture Notes in Phys. 126, Springer, Berlin 1980, 21–76.
  • –. –. –. –., On the holonomic systems of microdifferential equations, III: Systems with regular singularities, Publ. Res. Inst. Math. Sci. 17 (1981), 813–979.
  • B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032.
  • B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math 93 (1971), 753–809.
  • Y. Laurent, Polygône de Newton et b-fonctions pour les modules microdifférentiels, Ann. Sci. École Norm. Sup. (4) 20 (1987), 391–441.
  • –. –. –. –., Vanishing cycles of $\mathcalD$-modules, Invent. Math. 112 (1993), 491–539.
  • –. –. –. –., Vanishing cycles of irregular $\mathcalD$-modules, Compositio Math. 116 (1999), 241–310.
  • –. –. –. –., “Regularity of $\mathcal D$-modules associated to a symmetric pair” in Autour de l'analyse microlocale, Astérisque 284, Soc. Math. France, Montrouge, 2003, 165–180.
  • Y. Laurent and T. Monteiro Fernandes, Systèmes différentiels fuchsiens le long d'une sous-variété, Publ. Res. Inst. Math. Sci. 24 (1988), 397–431.
  • Y. Laurent and P. Schapira, Image inverses des modules différentiels, Compositio Math. 61 (1987), 229–251.
  • T. Levasseur and J. T. Stafford, Invariant differential operators and a homomorphism of Harish-Chandra, J. Amer. Math. Soc. 8 (1995), 365–372.
  • –. –. –. –., The kernel of an homomorphism of Harish-Chandra, Ann. Sci. École Norm. Sup. (4) 29 (1996), 385–397.
  • –. –. –. –., Invariant differential operators on the tangent space of some symmetric spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), 1711–1741.
  • J.-P. Ramis, Théorèmes d'indices Gevrey pour les équations différentielles ordinaires, Mem. Amer. Math. Soc. 48 (1984), no. 296.
  • R. W. Richardson, Orbits, invariants, and representations associated to involutions of reductive groups, Invent. Math. 66 (1982), 287–312.
  • M. Sato, T. Kawai, and M. Kashiwara, “Microfunctions and pseudo-differential equations” in Hyperfunctions and Pseudo-Differental Equations (Katata, Japan, 1971), Lecture Notes in Math. 287, Springer, Berlin, 1973, 265–529.
  • J. Sekiguchi, “Invariant spherical hyperfunctions on the tangent space of a symmetric space” in Algebraic Groups and Related Topics (Kyoto/Nagoya, Japan, 1983), Adv. Stud. Pure Math. 6, North-Holland, Amsterdam, 1985, 83–126.
  • V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Prentice-Hall Ser. Modern Anal., Prentice-Hall, Englewood Cliffs, N.J., 1974.
  • ––––, Harmonic Analysis on Real Reductive Groups, Lecture Notes in Math. 576, Springer, Berlin, 1977.