Duke Mathematical Journal

Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-I equation

L. Molinet, J.-C. Saut, and N. Tzvetkov

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The main results of this paper are concerned with the "bad" behavior of the KP-I equation with respect to a Picard iteration scheme applied to the associated integral equation, for data in usual or anisotropic Sobolev spaces. This leads to some kind of ill-posedness of the corresponding Cauchy problem: the flow map cannot be of class $C\sp 2$ in any Sobolev space.

Article information

Duke Math. J., Volume 115, Number 2 (2002), 353-384.

First available in Project Euclid: 26 May 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35Q53: KdV-like equations (Korteweg-de Vries) [See also 37K10]
Secondary: 35B30: Dependence of solutions on initial and boundary data, parameters [See also 37Cxx] 35R25: Improperly posed problems


Molinet, L.; Saut, J.-C.; Tzvetkov, N. Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-I equation. Duke Math. J. 115 (2002), no. 2, 353--384. doi:10.1215/S0012-7094-02-11525-7. https://projecteuclid.org/euclid.dmj/1085598146

Export citation


  • B. Birnir, C. E. Kenig, G. Ponce, N. Svanstedt, and L. Vega, On the ill-posedness of the IVP for the generalized Korteweg --.de Vries and nonlinear Schrödinger equations, J. London Math. Soc. (2) 53 (1996), 551--559.
  • B. Birnir, G. Ponce, and N. Svanstedt, The local ill-posedness of the modified KdV equation, Ann. Inst. H. Poinicaré Anal. Non Linéaire 13 (1996), 529--535.
  • J. L. Bona and R. Smith, The initial-value problem for the Korteweg --.de Vries equation, Philos. Trans. Roy. Soc. London Ser. A 278 (1975), 555--601.
  • J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I: Schrödinger equations, Geom. Funct. Anal. 3 (1993), 107--156.
  • --. --. --. --., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, II: The KdV equation, Geom. Funct. Anal. 3 (1993), 209--262.
  • --. --. --. --., On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal. 3 (1993), 315--341.
  • --. --. --. --., Periodic Korteweg --.de Vries equation with measures as initial data, Selecta Math. (N.S.) 3 (1997), 115--159.
  • R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque 57, Soc. Math. France, Montrouge, 1978.
  • J. Colliander, C. E. Kenig, and G. Staffilani, personal communication, March 2001.
  • J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain), Astérique 237 (1996), 163--187., Séminaire Bourbaki 1994/95, exp. no. 796.
  • J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 309--327.
  • R. J. Iório Jr. and W. V. L. Nunes, On equations of KP-type, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 725--743.
  • C. A. Jones and P. H. Roberts, Motions in a Bose condensate, IV: Axisymmetric solitary waves, J. Phys. A Math. Gen. 15 (1982), 2599--2619.
  • T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Sokes equations, Comm. Pure Appl. Math. 41 (1988), 891--907.
  • C. E. Kenig, G. Ponce, and L. Vega, On the (generalized) Korteweg --.de Vries equation, Duke Math. J. 59 (1989), 585--610.
  • --. --. --. --., Well-posedness and scattering results for the generalized Korteweg --.de Vries equations via the contraction principle, Comm. Pure Appl. Math. 46 (1993), 527--620.
  • --. --. --. --., A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), 573--603.
  • J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969.
  • L. Molinet, On the asymptotic behavior of solutions to the (generalized) Kadomtsev-Petviashvili-Burgers equations, J. Differential Equations 152 (1999), 30--74.
  • L. Molinet, J.-C. Saut, and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal. 33 (2001), 982--988. \CMP1 885 293
  • J.-C. Saut, Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana Univ. Math. J. 42 (1993), 1011--1026.
  • J.-C. Saut and N. Tzvetkov, The Cauchy problem for higher-order KP equations, J. Differential Equations 153 (1999), 196--222.
  • --. --. --. --., The Cauchy problem for the fifth order KP equations, J. Math. Pures Appl. (9) 79 (2000), 307--338.
  • --. --. --. --., On periodic KP-I type equations, Comm. Math. Phys. 221 (2001), 451--476.
  • H. Takaoka and N. Tzvetkov, On the local regularity of the Kadomtsev- Petviashvili-II equation, Internat. Math. Res. Notices 2001, 77--114.
  • M. M. Tom, ``On a generalized Kadomtsev-Petviashvili equation'' in Mathematical Problems in the Theory of Water Waves (Luminy, France, 1995), Contemp. Math. 200, Amer. Math. Soc., Providence, 1996, 193--210.
  • N. Tzvetkov, Remark on the local ill-posedness for KdV equation, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 1043--1047.
  • V., Zakharov, ``Weakly nonlinear waves on the surface of an ideal finite depth fluid'' in Nonlinear Waves and Weak Turbulence, Amer. Math. Soc. Transl. Ser. 2 182, Amer. Math. Soc., Providence, 1998, 167--197.