Duke Mathematical Journal

Evaluation of Dedekind sums, Eisenstein cocycles, and special values of L-functions

Paul E. Gunnells and Robert Sczech

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We define higher-dimensional Dedekind sums that generalize the classical Dedekind-Rademacher sums as well as Zagier's sums, and we show how to compute them effectively using a generalization of the continued-fraction algorithm.

We present two applications. First, we show how to express special values of partial zeta functions associated to totally real number fields in terms of these sums via the Eisenstein cocycle introduced by R. Sczech. Hence we obtain a polynomial time algorithm for computing these special values. Second, we show how to use our techniques to compute certain special values of the Witten zeta function, and we compute some explicit examples.

Article information

Duke Math. J., Volume 118, Number 2 (2003), 229-260.

First available in Project Euclid: 23 April 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11F20: Dedekind eta function, Dedekind sums
Secondary: 11F75: Cohomology of arithmetic groups 11R42: Zeta functions and $L$-functions of number fields [See also 11M41, 19F27]


Gunnells, Paul E.; Sczech, Robert. Evaluation of Dedekind sums, Eisenstein cocycles, and special values of L -functions. Duke Math. J. 118 (2003), no. 2, 229--260. doi:10.1215/S0012-7094-03-11822-0. https://projecteuclid.org/euclid.dmj/1082744647

Export citation


  • A. Ash and L. Rudolph, The modular symbol and continued fractions in higher dimensions, Invent. Math. 55 (1979), 241--250.
  • A. I. Barvinok, A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed, Math. Oper. Res. 19 (1994), 769--779.
  • A. Barvinok and J. E. Pommersheim, ``An algorithmic theory of lattice points in polyhedra'' in New Perspectives in Algebraic Combinatorics (Berkeley, 1996--97.), Math. Sci. Res. Inst. Publ. 38, Cambridge Univ. Press, Cambridge, 1999, 91--147.
  • M. Beck and S. Robins, Dedekind sums: A combinatorial-geometric viewpoint, preprint.
  • M. Brion and M. Vergne, Arrangement of hyperplanes, II: The Szenes formula and Eisenstein series, Duke Math. J. 103 (2000), 279--302.
  • L. Carlitz, A note on generalized Dedekind sums, Duke Math. J. 21 (1954), 399--403.
  • R. Dedekind, ``Erluterungen zu zwei Fragmenten von Riemann'' in Gesammelte Mathematische Werke, Vol. I, Vieweg, Braunschweig, 1930, 159--173.
  • A. Fröhlich and M. J. Taylor, Algebraic Number Theory, Cambridge Stud. Adv. Math. 27, Cambridge Univ. Press, Cambridge, 1993.
  • W. Fulton and J. Harris, Representation Theory: A First Course, Grad. Texts in Math. 129, Springer, New York, 1991.
  • R. Goodman and N. R. Wallach, Representations and Invariants of the Classical Groups, Encyclopedia Math. Appl. 68, Cambridge Univ. Press, Cambridge, 1998.
  • P. E. Gunnells, Computing Hecke eigenvalues below the cohomological dimension, Experiment. Math. 9 (2000), 351--367.
  • F. Hirzebruch and D. Zagier, The Atiyah-Singer Theorem and Elementary Number Theory, Math. Lect. Ser. 3, Publish or Perish, Boston, 1974.
  • S. Hu and D. Solomon, Properties of higher-dimensional Shintani generating functions and cocycles on $\PGL_{3}(\mathbf{Q})$, Proc. London Math. Soc. (3) 82 (2001), 64--88.
  • M. R. Khan, Computation of partial zeta values at $s=0$ over a totally real cubic field, J. Number Theory 57 (1996), 242--277.
  • L. Kronecker, ``Die absolut kleinsten Reste reeller Grössen'' in Leopold Kronecker's Werke, Vol. III, Chelsea, New York, 1968, 113--136.
  • H. Rademacher and E. Grosswald, Dedekind Sums, Carus Math. Monogr. 16, Math. Assoc. America, Washington, DC, 1972.
  • R. Sczech, Eisenstein group cocycles for $\GL_n$ and values of ${L}$-functions, Invent. Math. 113 (1993), 581--616.
  • A. Szenes, Iterated residues and multiple Bernoulli polynomials, Internat. Math. Res. Notices 1998, 937--956.
  • E. Witten, On quantum gauge theories in two dimensions, Comm. Math. Phys. 141 (1991), 153--209.
  • D. Zagier, Higher dimensional Dedekind sums, Math. Ann. 202 (1973), 149--172.
  • --. --. --. --., ``Values of zeta functions and their applications'' in First European Congress of Mathematics (Paris, 1992), Vol. II, Progr. Math. 120, Birkhäuser, Basel, 1994, 497--512.