Duke Mathematical Journal

Residue theorem for rational trigonometric sums and Verlinde's formula

András Szenes

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We present a compact formula computing rational trigonometric sums. Such sums appeared in the work of E. Verlinde on the dimension of conformal blocks in Wess-Zumino-Witten (WZW) theory. As an application, we show that a formula of J.-M. Bismut and F. Labourie for the Riemann-Roch numbers of moduli spaces of flat connections on a Riemann surface coincides with Verlinde's expression.

Article information

Source
Duke Math. J., Volume 118, Number 2 (2003), 189-227.

Dates
First available in Project Euclid: 23 April 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1082744646

Digital Object Identifier
doi:10.1215/S0012-7094-03-11821-9

Mathematical Reviews number (MathSciNet)
MR1980993

Zentralblatt MATH identifier
1042.14030

Subjects
Primary: 11L03: Trigonometric and exponential sums, general
Secondary: 14H60: Vector bundles on curves and their moduli [See also 14D20, 14F05] 14N20: Configurations and arrangements of linear subspaces

Citation

Szenes, András. Residue theorem for rational trigonometric sums and Verlinde's formula. Duke Math. J. 118 (2003), no. 2, 189--227. doi:10.1215/S0012-7094-03-11821-9. https://projecteuclid.org/euclid.dmj/1082744646


Export citation

References

  • A. Alekseev, E. Meinrenken, and C. Woodward, A fixed point formula for loop group actions, preprint.
  • --------, Formulas of Verlinde type for non-simply connected groups, preprint.
  • M. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), 523--615.
  • A. Beauville and Y. Laszlo, Conformal blocks and generalized theta functions, Comm. Math. Phys. 164 (1994), 385--419.
  • J.-M. Bismut and F. Labourie, ``Symplectic geometry and the Verlinde formulas'' in Surveys in Differential Geometry: Differential Geometry Inspired by String Theory, Surv. Differ. Geom. 5, International Press, Boston, 1999, 97--311.
  • M. Brion and M. Vergne, Residue formulae, vector partition functions and lattice points in rational polytopes, J. Amer. Math. Soc. 10 (1997), 797--833.
  • --. --. --. --., Arrangement of hyperplanes, I: Rational functions and Jeffrey-Kirwan residue, Ann. Sci. École Norm. Sup. (4) 32 (1999), 715--741.
  • --. --. --. --., Arrangement of hyperplanes, II: The Szenes formula and Eisenstein series, Duke Math. J. 103 (2000), 279--302.
  • I. M. Gelfand and A. V. Zelevinski, Algebraic and combinatorial aspects of the general theory of hypergeometric functions (in Russian), Funktsional. Anal. i Prilozhen 20, no. 3 (1986), 17--34.
  • L. C. Jeffrey and F. Kirwan, Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface, Ann. of Math. (2) 148 (1998), 109--196.
  • V. G. Kac, Infinite-Dimensional Lie Algebras, 3d ed., Cambridge Univ. Press, Cambridge, 1990.
  • S. Kumar and M. S. Narasimhan, Picard group of the moduli spaces of $G$-bundles, Math. Ann. 308 (1997), 155--173.
  • E. Meinrenken and C. Woodward, Hamiltonian loop group actions and Verlinde factorization, J. Differential Geom. 50 (1998), 417--469.
  • P. Orlik and H. Terao, Arrangements of Hyperplanes, Grundlehren Math. Wiss. 300, Springer, Berlin, 1992.
  • C. Sorger, La formule de Verlinde, Asterisque 237 (1996), 3, 87--114., Séminaire Bourbaki 1994/95, exp. 794.
  • A. Szenes, ``The combinatorics of the Verlinde formulas'' in Vector Bundles in Algebraic Geometry (Durham, 1993), London Math. Soc. Lecture Note Ser. 208, Cambridge Univ. Press, Cambridge, 1995, 241--253.
  • --. --. --. --., Iterated residues and multiple Bernoulli polynomials, Internat. Math. Res. Notices 1998, no. 18, 937--956.
  • A. Szenes and M. Vergne, Residue formulae for vector partitions and Euler-MacLaurin sums, Adv. in Appl. Math. 30 (2003), 295--342.
  • C. Teleman, The quantization conjecture revisited, Ann. of Math. (2) 152 (2000), 1--43.
  • M. Thaddeus, Conformal field theory and the cohomology of the moduli space of stable bundles, J. Differential Geom. 35 (1992), 131--149.
  • E. Verlinde, Fusion rules and modular transformations in $2$D conformal field theory, Nuclear Phys. B 300 (1988), 360--376.
  • E. Witten, On quantum gauge theories in two dimensions, Comm. Math. Phys. 141 (1991), 153--209.
  • --. --. --. --., Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992), 303--368.